

Lifestyle and opportunity @ your doorstep

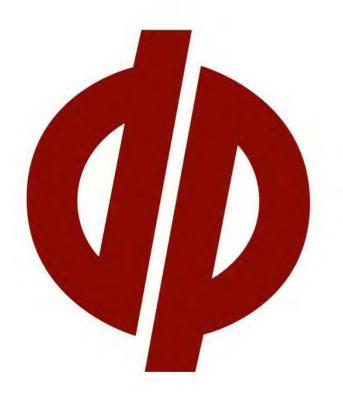
Meeting Date:	Tuesday 22 November 2022
Location:	Council Chambers, Level 1A, 1 Pope Street, Ryde and Online
Time:	6.00pm

ATTACHMENTS FOR COUNCIL MEETING

ltem

8 POST EXHIBITION REPORT - PLANNING PROPOSAL TO REZONE LAND AT 22 WINBOURNE STREET, WEST RYDE FROM SP2 (EDUCATIONAL ESTABLISHMENT) TO PART RE1 PUBLIC RECREATION AND PART C2 ENVIRONMENTAL CONSERVATION

Attachment 11 Report on Detailed Site Investigation (Contamination) (Douglas Partners, February 2021)



Report on Detailed Site Investigation (Contamination)

Marsden High School Repurposed to Netball Facility Marsden High School, West Ryde

Prepared for School Infrastructure New South Wales (SINSW)

> Project 99872.01 February 2021

Document History

Project No.	99872.01	Document No.	R.002.Rev0
Document title	Report on Detail	ed Site Investigation (Co	ontamination)
	Marsden High S	chool Repurposed to Ne	tball Facility
Site address	Marsden High School, West Ryde		
Report prepared for	School Infrastruc	cture New South Wales	(SINSW)
File name	99872.01.R.002	.Rev0	

Document status and review

evision 0 Jack Hinchliffe Tim Wright 17 February 2021	Prepared by	Reviewed by	Date issued
	Jack Hinchliffe	Tim Wright	17 February 2021

s (SINSW
s (S

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author pp LisaTeng	17 February 2021
Reviewer	17 February 2021

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 D21/78776

Table of Contents

Page

1.	Introduction	1
2.	Scope of Work	2
3.	Site Information	3
4.	Environmental Setting	4
5.	Previous Reports and Site History	4
	5.1 Preliminary (Contamination) Site Investigation (DP, 2020)	4
6.	Preliminary Conceptual Site Model	5
7.	Sampling and Analysis Quality Plan	8
	7.1 Data Quality Objectives	8
	7.2 Soil Sampling Rationale	8
8.	Site Assessment Criteria	8
9.	Results	9
	9.1 Field Work Results	9
	9.2 Laboratory Analytical Results	9
10.	Discussion	10
	10.1 Contamination	10
	10.2 Preliminary Waste Classification	10
	10.3 VENM Assessment	11
	10.4 Data Quality Assurance and Quality Control	12
11.	Conclusions and Recommendations	12
12.	References	13
13.	Limitations	13

D21/78776

Appendices

Appendix A:	Drawing
Appendix B:	Notes About this Report
Appendix C:	Site Photographs
Appendix D:	Data Quality Objectives and Data Quality Indicators
Appendix E:	Field Work Methodology
Appendix F:	Logs and Explanatory Notes
Appendix G:	Site Assessment Criteria
Appendix H:	Summary of Laboratory Results
Appendix I:	Quality Analysis and Quality Controls
Appendix J:	Laboratory Certificates of Analysis, Chain of Custody Documentation and Sample Receipt Advice

Report on Detailed Site Investigation (Contamination) Marsden High School Repurposed to Netball Facility Marsden High School, West Ryde

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by School Infrastructure New South Wales (SINSW) complete this detailed site investigation (contamination) (DSI) for a proposed redevelopment of Marsden High School, West Ryde (the site) into a netball facility. The site is shown on Drawing 1, Appendix A.

The investigation was undertaken in accordance with DP's proposal SYD201127 dated 16 October 2020.

It is understood that the school will be relocated to a nearby campus as part of wider education upgrades in the Ryde Local Government area. The existing school grounds are proposed to be developed to a new netball facility once the school has relocated. Specific details of the development have not been confirmed at this early stage.

It is understood that the report will be used to support the initial master planning phase and concept / schematic design process of the project. Therefore, a limited sampling programme was adopted for the DSI.

DP previously completed a report titled *Preliminary (Contamination) Site Investigation* (The PSI) (DP, 2020) for SINSW to assess the potential for contamination at the site based on past and present land uses. The PSI recommended an intrusive soil investigation and depending on the proposed development design, a preliminary waste classification. This current DSI addresses that recommendation.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The PSI was undertaken concurrently with an intrusive geotechnical investigation¹ which is reported under a separate cover.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

¹ Douglas Partners Pty Ltd, 'Report on Geotechnical Assessment, Marsden High School Repurposed to Netball Facility, Marsden High School, Ryde, dated February 2021, reference: 99872.00.R.002 (DP, 2021).

2. Scope of Work

The scope of works comprised an intrusive investigation as described below:

- Drilling of 23 boreholes across the site using a track mounted drilling rig;
- Collection of soil samples for contamination testing from all boreholes at regular intervals and where signs of contamination were observed;
- Screening of all soil samples for volatile organic compounds (VOC) using a photo-ionisation detector (PID);
- Dispatch and analysis of 45 selected soil samples and quality control samples for analysis of a combination of the following contaminants and parameters at a NATA accredited laboratory:
 - o Metals / metalloids (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - o Total recoverable hydrocarbons (TRH);
 - o Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Total phenols;
 - o Asbestos;
 - o pH; and
 - o Cation exchange capacity (CEC).
- Field sampling and laboratory analysis generally consistent with standard environmental protocols, including a quality assurance and quality control (QA / QC) plan consisting of 10% replicate sampling, trip spikes, trip blanks, appropriate chain-of-custody procedures and laboratory QA / QC testing;
- Interpretation of the analytical results against the adopted site assessment criteria (SAC);
- Data quality assessment;
- Updating the conceptual site model (CSM); and
- Preparation of this report detailing the methodology and results of the investigation with reference to EPA approved guidelines.

The investigation was undertaken in accordance with project specific data quality objectives (DQO) as discussed in Appendix D.

3. Site Information

Site Address	Marsden High School, West Ryde	
Legal Description	Lot 1, Deposited Plan 220808	
Area	Approximately 5.5 ha	
Zoning	Zone SP2 Infrastructure	
Local Council Area	Ryde City Council	
Current Use	High School	
Surrounding Uses North - Residential East - Residential and Public Park South - Ermington Public School West - Residential		

The site boundary is shown on Figure 1.

Figure 1: Site Location

Detailed Site Investigation (Contamination) , Marsden High School Repurposed to Netball Facility Marsden High School, West Ryde

99872.01.R.002.Rev0 February 2021

4. Environmental Setting

Regional Topography	The areas the surrounding site generally slope sharply in north-east and south- east directions towards Archers Creek which runs along the eastern side of the site.	
Site Topography	The overall site slopes down from the north western corner to the south east towards Archer Creek. The surface levels across the site fall from about RL 42 m relative to Australian Height Datum (AHD) near the north western corner to about RL 30 m, AHD on the south eastern corner.	
Soil Landscape	Reference to Sydney 1:100,000 Soils Landscape Sheet indicates that the site is within Glenorie soil landscape which typically comprises undulating to rolling low hills on Wianamatta Group shales.	
Geology	Reference to Sydney 1:100,000 Geology Sheet indicates that the site is underlain by Wianamatta Group Ashfield Shale; black to dark-grey shale and laminate sedimentary rock the from Triassic age.	
Acid Sulfate Soils	Reference to the 1:25 000 Acid Sulphate Soils (ASS) Risk map indicates that the site is in an area of no known occurrence of acid sulphate soils.	
Surface Water	ater Archers Creek is present along the eastern portion of the site and flows south- downgradient, surface water is expected to infiltrate into exposed soils, sheet into Archers Creek and stormwater drains at Brush Road.	
Groundwater No registered groundwater bores are located within 1 km of the site groundwater was observed during previous investigations at the site Section 6).		

Further Detail on the environmental setting is provided in DP (2020).

5. Previous Reports and Site History

5.1 Preliminary (Contamination) Site Investigation (DP, 2020)

DP (2020) comprised a desktop study and search of the relevant site history documentation including a review of the title deeds, historical aerial photography and previous investigation reports, and a search of the public registers and planning records.

The site history information suggests that the site has been owned by the NSW Government and used as a school since at least the 1960s. Information from historical aerial photographs suggest that the site has continued to be developed since the 1960's into the school as it is currently. Prior to becoming a school, the site appeared to have been vacant since at least the 1930s and it is unknown what the site may have been used for prior to this, but aerial imagery indicates the site may have been used for agricultural purposes.

Based on the outcomes of the PSI it was considered that the risk of significant or widespread contamination at the site is low to moderate; given the risk of asbestos on the ground or in the fill, other potential contaminants in the fill and some possible low level application of herbicides and pesticides at the site.

In order to achieve an outcome stating that the site is suitable or can be made suitable for the proposed development (as required under SEPP55), it was recommended that an intrusive investigation be undertaken. It was recommended that the intrusive works include a soil and groundwater assessment and depending on the proposed development design, a preliminary waste classification. Given the intrusive investigation was proposed to be undertaken prior to demolition of the buildings on site, a limited sampling program was recommended with additional sampling following demolition to assess the areas within the footprints of the buildings. An updated hazardous material building survey was also recommended for the site prior to renovation or demolition works.

6. Preliminary Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways).

Potential Sources

The PSI identified the following potential sources of contamination and associated contaminants of potential concern (COPC).

- S1: Fill: Associated with levelling and forming the site;
 - COPC include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), phenols and asbestos.
- S2: Previous and current general site maintenance and previous agricultural activities (including low level application of pesticides, fertilisers and herbicides);
 - o COPC include OPP, OCP, metals and herbicides.
- S3: Former buildings and renovations of current buildings on-site;
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.
- S4: Unsealed carparks on-site;
 - o COPC include metals (lead), TRH, BTEX and PAH.

Potential Receptors

The following potential human receptors have been identified:

R1: Current users [secondary school];

- R2: Construction and maintenance workers;
- R3: End users [public (open space)]; and
- R4: Adjacent site users [primary school and residential].

The following potential environmental receptors have been identified:

- R5: Surface water [Archer Creek];
- R6: Groundwater; and
- R7: Terrestrial ecology.

Potential Pathways

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and/or vapours;
- P3: Surface water run-off;
- P4: Leaching of contaminants and vertical migration into groundwater;
- P5: Lateral migration of groundwater providing base flow to water bodies; and
- P6: Contact with terrestrial ecology.

Summary of Potentially Complete Exposure Pathways

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S4) and receptors (R1 to R7) are provided in below Table 1.

Source and COPC	Transport Pathway	Receptor	Risk Management Action
 S1: Fill COPC: Metals, TRH, BTEX, PAH, OPP, OCP, PCB and asbestos. S2: Previous and current general site maintenance 	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Current users [secondary school] R2: Construction and maintenance workers R3: End users [public (open space)] R4: Adjacent site users [primary school and residential] 	An intrusive investigation is recommended to assess possible contamination including testing of the soil and groundwater. This can be undertaken in a staged manner
	P3: Surface water run-off	R5: Surface water [Archer Creek]	whereby the soil results may inform

Table 1: Summary of Potentially Complete Exposure Pathways

Source and COPC	Transport Pathway	Receptor	Risk Management Action
and agricultural use COPC: OPPs, OCPs, metals and herbicides*. S4: Unsealed carparks COPC: metals, TRH, BTEX and PAHs.	P4: Lateral migration of groundwater providing base flow to water bodies		the need for a groundwater assessment.
	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	
	P6: Contact with terrestrial ecology	R7: Terrestrial ecology	
S3: Former buildings and renovations of current buildings on site COPC: Asbestos, SMF, lead (in paint) and PCB	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Current users [secondary school] R2: Construction and maintenance workers R3: End users [public (open space)] R4: Adjacent site users [primary school and residential] 	To complement the asbestos register previously generated, a hazardous building materials survey is recommended to update the current register and identify any SMF, lead paint and PCB in the buildings.
	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	As mentioned above, an intrusive investigation is recommended to assess the potentia impact on the soil and, if impacted, asses the risk to groundwater.

*Herbicide contamination is most likely to occur via spills where they are stored and mixed / diluted. Therefore contamination would most likely have occurred in maintenance related buildings and not the grounds and fields. As the school is currently operating, sampling of areas where herbicides may have been stored / mixed was not possible and therefore samples collected during the assessment were not analysed for herbicides.

7. Sampling and Analysis Quality Plan

7.1 Data Quality Objectives

The PSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process is outlined in Appendix D.

7.2 Soil Sampling Rationale

A systematic sampling strategy to determine borehole locations was adopted. Locations were based on areas of access and the CSM with the rationale provided below. Borehole locations are shown on Drawing 1, in Appendix A.

Based on EPA (1995) over 60 sampling points would be required for a site of approximately 5.5 ha for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. Given the limited nature of this investigation as the school is currently operating, a sampling density of approximately 35% of the recommended sampling points for the site was adopted. A total of 23 test locations (BH01 to BH23) were therefore positioned across accessible areas of the site excluding the footprint of the operating school buildings in the north-west of the site due to access constraints.

Soil samples were collected from each borehole at depths of approximately 0.1 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

The general sampling methods are described in the field work methodology, included in Appendix E.

8. Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 6) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic recreational land use scenario. The derivation of the SAC is included in Appendix G and the adopted SAC are listed on the summary analytical results tables in Appendix H.

9. Results

9.1 Field Work Results

The borehole logs for this assessment are included in Appendix F. The logs recorded the following general sub-surface profile:

- HARDSTAND: asphaltic concrete over roadbase was observed in BH3 to BH5, BH11 and BH14 to depths of between 0.1 m and 0.25 m bgl. Concrete hardstand was observed in BH19 to a depth of 0.07 m bgl;
- **TOPSOIL:** INSERT DESCRIPTION was observed in BH1, BH2, BH6, BH8 to BH10, BH13, BH15, BH16 and BH18 to depths of between 0.1 m and 0.3 m bgl;
- FILL: clayey fill with silty sand or gravelly sand with some sandstone cobbles to depths of between 0.3 m and 3.0 m bgl; overlying;
- RESIDUAL CLAY: stiff to very stiff and hard clay to depths of between 0.7 m and 4.9 m bgl; overlying; and
- WEATHERED ROCK: Very low to low strength, weathered shale and sandstone to borehole termination depths of between 0.3 m and 4.95 m bgl.

Fill was observed to depths of between 0.02 m and 3 m bgl and anthropogenic inclusions were observed in filling including brick (BH19), glass (BH04) and ash (BH07).

The PID screening indicated that the sub-surface conditions were generally absent of VOC with all recorded values less than 5 ppm.

Free groundwater was observed whilst drilling BH07 at 3.7 m bgl. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

There were no other apparent records of visual or olfactory evidence (e.g., staining, odours, free phase product) to suggest the presence of contamination within the soils or groundwater observed in the investigation.

Photographs of the field work during the assessment are attached in Appendix C.

9.2 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables in Appendix H:

- Table H1: Summary of Results Metals, TRH, BTEX and PAH;
- Table H2: Summary of Results Phenols, OCP, OPP, PCB and asbestos;
- Table H3: Summary of Waste Classification Assessment;
- Table H4: Population Statistics for Nickel Concentrations in Samples; and
- Table H5: Pro UCL 95% Upper Confidence Limit Output.

The laboratory certificates of analysis together with the chain of custody and sample receipt information are provided in Appendix J.

10. Discussion

10.1 Contamination

As shown in the attached Tables H1 and H2, Appendix H, concentrations of the analytes in the soil samples were all less than the adopted SAC. Concentrations of BTEX, phenol, OCP, OPP, PCB and asbestos were below the PQL. Concentrations of TRH and PAH were above the practical quantitation limits (PQL) but below the SAC. Heavy metals were detected in all soil samples; however, the reported concentrations were within the adopted SAC in all samples tested with the exception of the following:

Nickel in samples BH3/0-0.1 m (57 mg/kg) and BH11/0-0.1 m (54 mg/kg) exceeded the SAC (EIL) criterion of 45 mg/kg.

However, the calculated 95% upper confidence limit of the mathematical average (UCL) for the zinc results falls below the EIL criterion. Therefore, in general accordance with NSW EPA (2014), the 95% UCL zinc concentration has been adopted in this report. The population statistics are shown in Table H4, Appendix H.

10.2 Preliminary Waste Classification

The following Table 2 presents the results of the six step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill (including surface soils) at the site, which do not meet the definition of Virgin Excavated Natural Material (VENM).

Step	Comments	Rationale
1. Is the waste special waste?	No	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes; Asbestos was not detected by the analytical laboratory.
2. Is the waste liquid waste?	No	The fill comprised a soil matrix.
3. Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
4. Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.

				and a lot in balance."
Table 2:	SIX	Step	Classification	Procedure

Step	Comments	Rationale
5. Determining a wastes classification using chemical assessment	Conducted	Refer to Table H3 (Appendix H).
Is the waste putrescible or non-putrescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

As shown in the attached Table H3, the majority of the results were within the CT1 criteria for general solid waste within the exception of the highlighted results. Samples BH3/0-0.1 m (nickel 57 mg/kg), BH9/0-0.1 m (lead 110 mg/kg) and BH11/0-0.1 m (nickel 54 mg/kg) exceeded the CT1 criteria. Therefore, TCLP analysis was undertaken on these selected samples and the results were within the SCC1 and TCLP1 criteria for general solid waste as defined in EPA (2014). As such, fill described in Section 9.1 is preliminarily classified as general solid waste (non-putrescible, SCC1, TCLP1). This is not a formal waste classification, which needs to be confirmed through additional investigations or sampling during construction works.

10.3 VENM Assessment

The following **Error! Reference source not found.** presents the results of the assessment of natural soils and bedrock at the site with reference to the VENM definition in the POEO Act and the EPA² website.

https://www.epa.nsw.gov.au/your-environment/waste/classifying-waste/virgin-excavated-naturalmaterial

Table 3: VENM Classification Procedure

ltem	Comments	Rationale		
1. Is the material natural?	Yes	Natural materials logged in the boreholes as per Section 9.1. These materials underlie the fill at the site.		
2. Is the material impacted by manufactured chemicals or process residues?	No	There were no visual or olfactory indicators of chemical contamination of the materials in the boreholes Concentrations of contaminants were considered to be typical of background concentrations (Table H3).		
3. Are the materials acid sulfate soils?	No	Refer to Section 4.		
4. Are there current or previous land uses that have (or may	No	Previous land uses may have impacted on surface soils overlying the materials. Low chemical concentrations indicate no likely impact on the natural materials.		

² https://www.epa.nsw.gov.au/your-environment/waste/classifying-waste/virgin-excavated-natural-material

Item	Comments	Rationale
have) contaminated the materials?		

As shown in the attached Table H3, the recorded concentrations in natural samples were below typical background concentrations. As such, it is considered that natural materials that underlie the site are likely to be classified as VENM. This is not a formal VENM classification, which needs to be confirmed through further visual and/or analytical confirmation during construction works.

10.4 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA / QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

11. Conclusions and Recommendations

Based on the site observations, field and laboratory analytical results, the risk of widespread gross chemical contamination is considered to be low and it is therefore considered that the site is suitable (from a contamination perspective) for the proposed netball facility, subject to the following:

- For buildings requiring demolition, the removal and disposal of the identified hazardous materials by an appropriately licensed and qualified contractor, at an appropriately licensed disposal facility;
- Validation / clearance of the demolition works area by a qualified occupational hygienist upon completion of demolition and removal of the buildings, confirming that there are no residual asbestos-containing materials or other hazardous materials remaining on the site;
- Additional investigation in building footprints (post demolition) including the analysis for herbicides within the footprint of the groundskeeping area of the school buildings; and
- Implementation of an Unexpected Finds Protocol such that any finds of contamination (e.g., asbestos) can be documented and managed under an appropriate management procedure.

The current results indicate that the fill is likely to be classified as general solid waste (non-putrescible). Given the laboratory results to date, consideration may be given to further investigating the potential to classify some of the fill (in particular, the deeper fill) under the NSW EPA excavated natural material (ENM) resource recovery order. The classification above is preliminary and subject to confirmation prior to removal of soils from the site.

Similarly, natural soils which underlie the site are likely to be classified as VENM, subject to further visual and / or analytical confirmation.

12. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene*. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land*. Contaminated Land Guidelines: NSW Environment Protection Authority.

13. Limitations

Douglas Partners (DP) has prepared this report (or services) for this project at Marsden High School, West Ryde in accordance with DP's proposal SYD201127.P.001.Rev0 dated 16 October 2020 and acceptance received from SINSW01425/20 dated 20 October 2020. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of School Infrastructure NSW for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as brick, glass and ash, were, however, located in previous below-ground filling, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling as the school is currently operating, or to vegetation preventing visual inspection and reasonable access in the north eastern portion of the site. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

D21/78776

Appendix A

Drawing

As close to existing buildings as possible, roughly within this footprint

Edge of biodiversity area

Brus

Road

Centre of oval

SW detention basin

ST.

This is the alternative building footprint location

Car park footprint

A

B

Vinb

D21/78776

Future

landscaped area

Ermington PS

C

D21/78776

Appendix B

Notes About this Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site. D21/78776

Appendix C

Site Photographs

Photo 1: Drilling works in the north western portion of site.

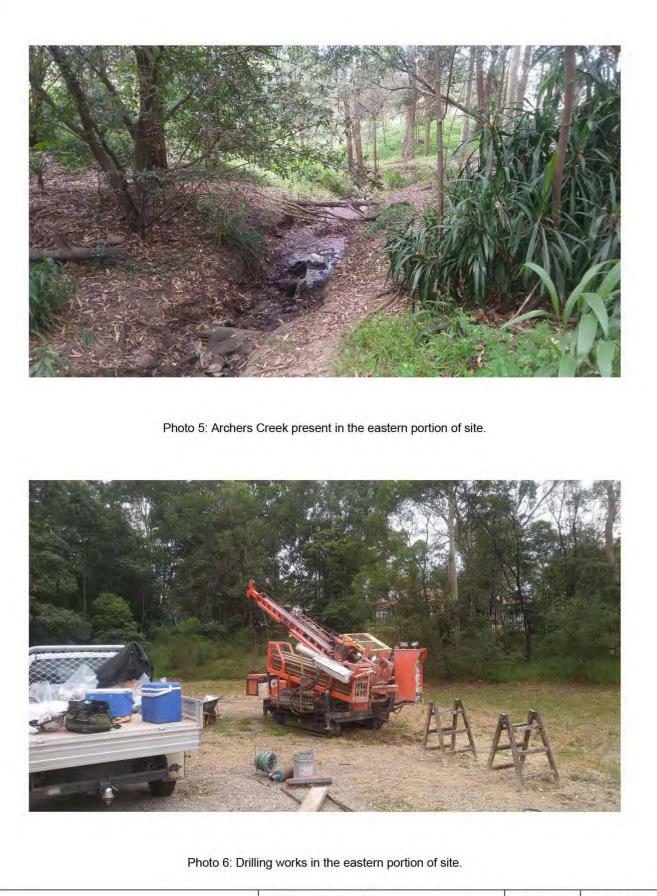


Photo 2: Drilling works within Marsden High School Courtyard.

Douglas Partners Geotechnics Environment Groundwater	Site Photographs		PROJECT:	99872.01
	Marsden High School Repurposed to Netball Facility		PLATE No:	1
	Marsden High School, West Ryde		REV:	0
	CLIENT	School Infrastructure New South Wales (SINSW)	DATE	28/01/2021

Douglas Partners Geotechnics Environment Groundwater	Site Photographs		PROJECT:	99872.01
	Marsden High School Repurposed to Netball Facility		PLATE No:	2
	Marsden High School, West Ryde		REV:	0
	CLIENT	School Infrastructure New South Wales (SINSW)	DATE	28/01/2021

Douglas Partners Geotechnics Environment Groundwater	Site Photographs		PROJECT:	99872.01
	Marsden High School Repurposed to Netball Facility		PLATE No:	3
	Marsden High School, West Ryde		REV:	0
	CLIENT	School Infrastructure New South Wales (SINSW)	DATE	28/01/2021

Photo 7: Archers Creek as it flows into the channel beneath the south eastern portion of site.

Douglas Partners Geotechnics Environment Groundwater	Site Phe	Site Photographs		99872.01
	Marsden High School Repurposed to Netball Facility		PLATE No:	4
	Marsden High School, West Ryde		REV:	0
	CLIENT	School Infrastructure New South Wales (SINSW)	DATE	28/01/2021

Appendix D

Data Quality Objectives and Data Quality Indicators

Appendix D Data Quality Objectives and Data Quality Indicators Marsden High School, West Ryde

D1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Step	Summary
1: State the problem	 The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken support the initial master planning phase and concept / schematic design process of the project. A preliminary conceptual site model (CSM) has been prepared (Section 6) for the proposed development. The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, Field staff.
2: Identify the decisions / goal of the study	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 6). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Section 8. The decision is to establish whether or not the results fall below the SAC. On this basis an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3: Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentration of COPC identified in the CSM (Section 6) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Section 8. A photoionization detector (PID) will be used on-site to screen soils for VOC. PID readings will be used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the Sampling and Analysis Quality Plan of the report, Section 7.
5: Develop the analytical approach (or decision rule)	The decision rule is to compare all analytical results with SAC (Section 8, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible. Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).

Step	Summary				
	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I.				
	Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and poses a potentially unacceptable risk to receptors (null hypothesis).				
	Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) complies with human health and environmental SAC and as such, does not pose a potentially unacceptable risk to receptors (alternative hypothesis).				
6: Specify the	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.				
performance or acceptance criteria	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:				
Unteria	As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, ie: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL shall subsequently be screened against the corresponding SAC.				
	The statistical assessment will only be able to be applied to certain datasets, such as those obtained via systematic sampling. Identification of areas for targeted sampling will be via professional judgement and errors will not be able to have a probability assigned to them.				
7: Optimise the design for	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.				
obtaining data	Further details regarding the proposed sampling plan are presented in Section 7.				

D1.0 References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

D21/78776

Appendix E

Field Work Methodology

Appendix E Field Work Methodology Marsden High School, West Ryde

E1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

 NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

E2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the nominated sample depth using a solid flight auger;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

E2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen for volatile organic compounds (VOC) using the PID.

E3.0 References

- HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix F

Logs and Explanatory Notes

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 44.8 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321285.9 NORTHING: 6258035.6 DIP/AZIMUTH: 90°/--

BORE No: BH 01 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

Denti	Description	hic	-	Sam	4 etc.	& In Situ Testing	5	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILL/TOPSOIL/SILT: low plasticity, brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.0</td><td></td><td></td><td></td><td>-</td></pl,>		A/E	0.0				-
0.2	CLAY CI-CH: medium to high plasticity, red-brown, w <pl, apparently="" residual<="" stiff,="" td=""><td>1</td><td></td><td>0.3 0.4</td><td></td><td>- -</td><td></td><td></td></pl,>	1		0.3 0.4		- -		
	Below 0.5m: very stiff, trace roots	11	A/E	0.4				-
		1	s		в	Bulk Sample 0.3-1.0m 5,8,10 N = 18		
		1		0.95				
		1	A/E	1.0 1.1				
		1						
		1		1.5				
1.7	CLAY CI: medium plasticity, pale grey with some yellow-brown and red-brown, trace roots and iron	1	S			5,9,14 N = 23		
-2	indurated gravel, w <pl, relict="" rock="" stiff,="" structure,<br="" very="">extremely weathered Ashfield Shale</pl,>	1	_	1.95				-2
								-
	Below 2.5m: apparently hard							
_								
3 3.0	SHALE: dark grey, low strength, Ashfield Shale		S	3.0		8/90		-3
3.09	Bore discontinued at 3.09m	<u></u>	0	-3.09-	1	refusal		
k	SPT refusal on low strength shale							-4
							-	

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PIL
 Point load axial test 1s(50) (MPa)

 U,
 Tube sample (xmm dia.)
 PL(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 PD
 Point load diametral test 1s(50) (MPa)

 W
 Water seep
 S
 Standard penetration test

 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 33.7 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321400 NORTHING: 6258068.8 DIP/AZIMUTH: 90°/--

BORE No: BH 02 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

Denti-	Description	hic		Sam		In Situ Testing	5	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILL/TOPSOIL/Silty CLAY: medium plasticity, dark brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.0 0.1</td><td></td><td></td><td>-</td><td></td></pl,>		A/E	0.0 0.1			-	
0.3	FILL/CLAY: medium plasticity, dark brown, trace fine sandstone gravel, w <pl, a="" condition<="" generally="" in="" p="" stiff=""></pl,>		A/E	0.4 0.5		235		
1			S A/E	0.95 1.0 1.1		2,3,5 N = 8	-1	
1.3	 ³ CLAY CI-CH: medium to high plasticity, yellow-brown, w<pl, firm,="" li="" residual<=""> Below 1.5m: red-brown mottled yellow-brown, trace fine </pl,>		A/E	1.4 1.5			-	
	ironstone gravel		S	1.95		2,3,3 N = 6		
-3				3.0		-7.7	-3	
3.3	³ Sandy CLAY CL: low to medium plasticity, red-brown, fine to medium sand, trace iron indurated bands, w <pl, very<br="">stiff, residual</pl,>		S	3.45		5,7,17 N = 24		
- 3.9	SANDSTONE: pale grev, low to medium strength.							

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 P
 Piston sample

 U
 Tube sample (xmm dia.)

 W
 Vater sample

 P
 Vater seep

 S
 Standard penetration test

 B
 Vater seep

 Y
 Standard penetration test

 Ample
 Vater seep

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample (1)

CLIENT:

PROJECT:

BOREHOLE LOG

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 35.8 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321361.6 NORTHING: 6257997.7 DIP/AZIMUTH: 90°/--

BORE No: BH 03 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

	2000	Description	hic	_		• · · · e	In Situ Testing	5	Well
1	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	0			Sar	Comments		Details
F	0.04 -	ASPHALTIC CONCRETE	XX	A/E	0.0				
	0.3-	FILL/ROADBASE/Sandy GRAVEL: dark grey, fine igneous gravel, fine to medium sand, moist, generally in a dense condition	X					-	
		FILL/Sandy CLAY: low to medium plasticity, pale grey and yellow-brown, fine to medium sand, w~PL, generally in a firm condition, reworked natural		A/E	0.4 0.5			-	
-	0.7-	CLAY CI: medium plasticity, pale grey and red-brown, trace fine sand, w <pl, residual<="" stiff,="" td=""><td></td><td>S</td><td></td><td></td><td>6,12 refusal</td><td></td><td></td></pl,>		S			6,12 refusal		
	0.9	SANDSTONE: pale grey, low to medium strength, possibly Mittagong Formation or Hawkesbury Sandstone			0.8	_			
1		Bore discontinued at 0.9m Auger refusal on inferred medium strength sandstone							
-2								-	-2
	N. T								-3
1 1 1 1 1 1									
25									
-4								-	-4
10									

TYPE OF BORING: Solid Flight Auger (TC-bit) to 0.9m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PIL(A) Point load avial test 1s(50) (MPa)

 U,
 Tube sample (x mm dia.)
 PI(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 PI(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 PI(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 POcket penetrometer (kPa)

 e
 D
 Water seep

 Water level
 V
 Shear vane (kPa)

BOREHOLE LOG

CLIENT: School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 36.7 AHD PROJECT: Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U
 Tube sample (x mm dia.)

 W
 Water sample (x mm dia.)

 D
 Water sample

 Water seep
 S

 Standard penetration test

 Y
 Water seep

 V
 Standard penetration test

 V
 V

EASTING: 321346.4 NORTHING: 6257950.9 DIP/AZIMUTH: 90°/--

BORE No: BH 04 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

Douglas Partners Geotechnics | Environment | Groundwater

		Description	Jic		Sam	a let	In Situ Testing	5	Well
1	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	G	Ę.		Sar	Comments		Details
	0.08	ASPHALTIC CONCRETE		A/E	0.0				
	0.14-	│ FILL/ROADBASE/Sandy GRAVEL: dark grey, fine │ igneous gravel, fine to medium sand, moist, generally in a │ dense condition	X		0.1				
		FILL/CLAY: medium plasticity, grey-brown and orange brown, trace fine to medium sand, w>PL, generally in a soft condition		A/E*	0.4 0.5				
	0.65 -	FILL/CLAY: medium plasticity, orange-brown, w~PL, generally in a soft condition, potentially reworked natural		s			0,1,3 N=4		-
1	ji i	At 1.05m: trace glass			0.95				-1
	1.5 -	CLAY CI: medium plasticity, red-brown with some pale			1.5				
		grey, with iron indurated bands, w <pl, residual<="" stiff,="" td=""><td></td><td>S</td><td></td><td></td><td>3,5,7 N = 12</td><td></td><td></td></pl,>		S			3,5,7 N = 12		
12				A/E	1.95 2.0 2.1				-2
	3.0-	CLAY CL-CI: low to medium plasticity, pale grey with			3.0				-3
	12	some orange-brown, w <pl, hard,="" relict="" rock="" structure,<br="">extremely weathered shale</pl,>	11	s			5,8,13/80 refusal		
	3.3 -	_ SHALE: dark grey, very low to low strength, Ashfield Shale _	4				Permit		
í.	3.38 -	Bore discontinued at 3.38m			-3.38-				
- 4		SPT refusal on very low strength shale	T						-4

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 34.1 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321395.6 NORTHING: 6257906.1 DIP/AZIMUTH: 90°/--

BORE No: BH 05 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

		Description	- Jic	_	Sam		In Situ Testing	-	Well
	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.025 -	ASPHALTIC CONCRETE	0.0	С	0.0				
	0.11-	FILL/ROADBASE/Sandy GRAVEL: fine to medium, dark grey, igneous, cemented road base			0.11				
		FILL/CLAY: medium plasticity, dark grey-brown, with fine to medium igneous gravel, w~PL, generally in a firm			0.4				
		condition	\otimes		0.5			[
			\otimes	s			2,3,2 N = 5		
					6		N = 5		-
			\otimes	A/E	0.9 0.95				
					1.0				
	1.2	FILL/CLAY: high plasticity, dark grey-brown, w~PL,							
		generally in a very soft condition, reworked natural	\otimes				·	-	
5				A/E	1.4 1.5	В	Bulk sample 0.4-2.4m		
-					112				
-			\otimes	s			0,0,0 N = 0		
			\times				N-U		
-2			\otimes		2.0				-2
÷			\otimes	A/E	2.1			-	S 1
					1				
	2.4		\bigotimes		2.4				
		CLAY CI-CL: low to medium plasticity, red-brown and pale grey, with some iron indurated bands, w <pl, hard,="" relict<="" td=""><td>11</td><td>A/E*</td><td>2.5</td><td></td><td></td><td></td><td>-</td></pl,>	11	A/E*	2.5				-
5		rock texture, extremely weathered shale	1/						
			11						
			1/	A/E	2.9				-
-3			11	AVE	3.0				-3
	3.1 -	SHALE: grey and red, very low strength, Ashfield Shale	====				7,13,17		
				S			N = 30		
-					3.45				
6.					0.40				
0									
81			==						
									6
4									-4
					-				
	4.5-	SHALE: dark grey, low strength, Ashfield Shale		S	4.5 4.6		15/100 refusal		
		Bore discontinued at 4.6m SPT refusal on low strength shale							

RIG: Hanjin D13-8

DRILLER: Geosense TYPE OF BORING: Diacore to 0.11m; Solid Flight Auger (TC-bit) to 4.5m

LOGGED: TM

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: *Field replicate BD4/20210118 taken at 2.4-2.5m

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

SAMPLING & IN SITU TESTING LEGEND G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample Water seep Water seep

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 pD
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

BOREHOLE LOG

CLIENT: PROJECT: LOCATION: Marsden High School, Ryde

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 33.6 AHD Marsden H.S. Repurpose to Netball Facility

EASTING: 321407.6 NORTHING: 6257911.3 DIP/AZIMUTH: 90°/--

BORE No: BH 05A PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

	Description	.0		Sam	pling a	& In Situ Testing		Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILL/TOPSOIL/SILT: low plasticity, brown, with rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>ß</td><td></td><td></td><td>0)</td><td></td><td>-</td><td></td></pl,>	ß			0)		-	
0.3	FILL/CLAY: high plasticity, dark grey-brown, w~PL, generally in a very soft condition, reworked natural		в	0.3		Bulk sample 0.3-1.3m	1	
1.3				-1.3-				
1.3	Bore discontinued at 1.3m Target depth reached						-2	
							-	

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PIL(A) Point load avial test 1s(50) (MPa)

 U,
 Tube sample (x mm dia.)
 PIL(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 PIL(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 Point load diametral test 1s(50) (MPa)

 W
 Water sample
 Pocket penetrometer (kPa)

 B
 Water seep
 S

 V
 Water level
 V
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

Douglas Partners Geotechnics | Environment | Groundwater

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 31.9 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321481.1 NORTHING: 6257873.8 DIP/AZIMUTH: 90°/--

BORE No: BH 06 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

	Dave	Description	- Jic		Sam		n Situ Testing		Well	
	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction	
ļ		Strata		£	ð	Sar	Comments		Details	
ł	0.1	FILL/TOPSOIL/SILT: low plasticity, dark grey-brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>1n</td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl,>	1n					-		
-	0.3 -	SANDSTONE: pale grey and yellow, medium strength, possibly Mittagong Formation or Hawkesbury Sandstone		-	-			-		
		Bore discontinued at 0.3m Auger refusal on inferred medium strength sandstone						-		
	1							-1		
-								-		
ALC: NOT THE REAL OF THE REAL	2							-2		
								-		
-	0									
-								-		
	3							-3		
-								-		
-										
	4							-4		
-								-		
-								-		
i				1.00						

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 U
 Tube sample (xmm dia.)
 PL(D) Point bad dametral test Is(50) (MPa)

 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 ample
 Image: Water level
 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 30.5 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321567.2 NORTHING: 6257893.2 DIP/AZIMUTH: 90°/--

BORE No: BH 07 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

	Donth	Description	hic	_	Sam		In Situ Testing	5	Well
	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/CLAY: medium plasticity, red-brown, with silt, trace rootlets, w <pl, a="" condition,="" firm="" generally="" in="" reworked<br="">natural</pl,>		A/E	0.0 0.1				
1		hatura	\otimes						+
				A/E	0.4 0.5				Ę
			\otimes				422		-
-			\otimes	S			4,2,2 N = 4		-
-	t		\otimes	A/E	0.95				-1
					1.1				
					14				-
-		Below 1.5m: trace ash, generally in a very stiff condition		A/E	1.4 1.5				-
Ē		Baow 1.5h. take ash, generally in a very sun conduct		s			10,10,13		
-							N = 23		
-	2			A/E	1.95 2.0				-2
-					2.1				
-	2.4				2.4				-
		FILL/CLAY: medium to high plasticity, pale grey, yellow-brown and red-brown, w <pl, a="" firm<br="" generally="" in="">condition, reworked natural</pl,>		A/E	2.5				
į	2.7	CLAY CH: high plasticity, dark grey, trace rootlets, w <pl,< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,<>	1						
	3	stiff, alluvial	11	A/E	2.9 3.0				
	5		11		5.0				-3
			11	S			6,8,9 N = 17		
			1		3.45				
ļ			11	A/E*	3.5 3.6				-
			11					1-21	-
ļ	4		11					19-01	-4
			11						
ļ			1						-
			1/		4.5				
		Below 4.5m: very soft	11	s	1 T		0,0,1/140		
5			11	5			refusal		-
-	4.9 5 4.94	SANDSTONE: pale grey, low strength	(4.94-				-5
-		Bore discontinued at 4.94m SPT refusal on low strength sandstone							
-									-
[£						

REMARKS: *Field replicate BD5/20210119 taken at 3.5-3.6m

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PI(A) Point koad axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PI(D) Point koad diametral test Is(50) (MPa)

 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 a
 >
 Water seep
 S
 Standard penetration test

 mmle
 ¥
 Water level
 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample **Douglas Partners** 1 Geotechnics | Environment | Groundwater

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 28.7 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321531 NORTHING: 6258004.8 DIP/AZIMUTH: 90°/--

BORE No: BH 08 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

	onth	Description	hic	_	Sam		In Situ Testing	5	Well
	epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.1	FILL/Silty SAND: fine to medium sand, brown, with medium igneous gravel, trace rootlets, dry, generally in a loose condition		A/E	0.0 0.1			-	
		FILL/CLAY: medium plasticity, brown, with silt, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td>-</td><td></td></pl,>		A/E	0.4 0.5			-	
			\bigotimes	s			4,2,4 N = 6		
1	1.2-			A/E	0.95 1.0 1.1			-1	
	1.2	FILL/CLAY: medium plasticity, orange-brown, trace fine ironstone gravel, w <pl, a="" condition<="" generally="" in="" stiff="" td="" very=""><td></td><td>A/E</td><td>1.4 1.5</td><td></td><td></td><td></td><td></td></pl,>		A/E	1.4 1.5				
				s			10,10,13 N = 23		
2				A/E*	1.95 2.0 2.1			-2	
		Below 2.4m: trace fine igneous gravel		A/E	2.4 2.5				
				A/E	2.9				
3	3.0 -	CLAY CI-CH: medium to high plasticity, pale grey with some orange-brown, trace fine to medium ironstone gravel, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>s</td><td>3.0</td><td></td><td>6,8,9 N = 17</td><td>-3</td><td></td></pl,>		s	3.0		6,8,9 N = 17	-3	
	3.5 -	Sandy CLAY CL-CI: low to medium plasticity, pale grey,	4.		3.45			1	
	3.6 - 3.7 -	\fine to medium, w <pl, <br="" residual="">\SANDSTONE: pale grey, low to medium strength, //</pl,>		A	3.6 			-	
4		\possibly Mittagong Formation or Hawkesbury Sandstone / Bore discontinued at 3.7m Auger refusal on inferred medium to high strength sandstone						-4	
			-						

WATER OBSERVATIONS: No free groundwater observed REMARKS: *Field replicate BD10/20210119 taken at 2.0-2.1m

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PI(A) Point koad axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PI(D) Point koad diametral test Is(50) (MPa)

 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 a
 Water seep
 S
 Standard penetration test

 mmle
 ¥
 Water level
 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 41.7 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321507.4 NORTHING: 6258097 DIP/AZIMUTH: 90°/--

BORE No: BH 09 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

Π	- 2.1	Description	phic		San	npling & I	bling & In Situ Testing		Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
		FILL/SILT: low plasticity, dark brown, trace rootlets and sandstone gravel, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.0 0.1</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.0 0.1					
	- 0.3	CLAY CI-CH: medium to high plasticity, red-brown, trace rootlets, w <pl, apparently="" residual<="" stiff,="" td="" very=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.4 0.5					
14	- - -1 1.0-			A/E*	0.9			-	1	
		Bore discontinued at 1.0m Target depth reached								
40										
	-2								2	
39								-		
	-3								3	
38	-									
	-4								4	
37								-		
тү		SORING: Solid Flight Auger (TC-bit) to 1.0m		LOC	GGED	: TM	CAS	ING: Un	cased	
		BSERVATIONS: No free groundwater observed Field replicate BD8/20210119 taken at 0.9-1.0m SAMPLING & IN SITU TESTING LEGEND								
ABBCDE	Auger sau Bulk sam Block san Core drilli Disturbed Environm	mple G Gas sample PID Photo ionisation deter ple P Piston sample PL(A) Point load axial test Is mple U _x Tube sample (x mm dia.) PL(D) Point load diametral te ing W Water sample op Pocket penetrometer	ctor (ppm) 5(50) (MPa) est Is(50) (N (kPa) test	1Pa)		Ф	Doug Geotechnics		s Partners	

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 32.7 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321444.4 NORTHING: 6258059.9 DIP/AZIMUTH: 90°/--

BORE No: BH 10 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

Π		Description	<u>.</u>		Sam	pling &	In Situ Testing		Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/TOPSOIL/Silty CLAY: medium plasticity, brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>a</td><td>A/E</td><td>0.0 0.1</td><td></td><td></td><td></td><td></td></pl,>	a	A/E	0.0 0.1				
32	0.2	CLAY CI-CH: medium to high plasticity, red-brown, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.4 0.5				
	- 1			A/E	0.9 1.0				-1
	1.5			A/E	1.4 			-	
	-2	Bore discontinued at 1.5m Target depth reached							2 3 4
28								-	
TY W/	PE OF E			LOC	GED	: TM	CASI	NG: Un	Icased
A B B C D E	Auger sau Bulk sam K Block sar Core drilli Disturbed Environm	ple P Piston sample PL(A) Point load axial test Is mple U, Tube sample (xmm dia.) PL(D) Point load diametral te ing W Water sample pp Pocket penetrometer (ctor (ppm) (50) (MPa) est Is(50) (N (kPa) iest	/IPa)		Þ	Doug Geotechnics		s Partners

CLIENT:

PROJECT:

BOREHOLE LOG

Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

SAMPLING & IN SITU TESTING LEGEND

A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

 LING & IN SITU TESTING LEGEND

 G
 Gas sample

 PID
 Photo ionisation detector (ppm)

 P
 Piston sample

 U
 Tube sample (x mm dia.)

 W
 Water sample (x mm dia.)

 D
 Water sample

 Water seep
 S

 Standard penetration test

 Y
 Water seep

 V
 Standard penetration test

 V
 V

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 39.1 AHD EASTING: 321316.3 NORTHING: 6257984.5 DIP/AZIMUTH: 90°/--

BORE No: BH 11 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

Douglas Partners Geotechnics | Environment | Groundwater

1.00	Description	<u>.</u>		Sam	pling & I	n Situ Testing		Well
교 Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
0.0	a concentration of the second s	0.0	A/E	-0.0	0)		+ +	
- 0.	FILL/ROADBASE/Sandy GRAV/EL: dark grey, fine			0.1				
-	FILL/CLAY: medium plasticity, dark grey-brown, trace fine to medium sand, w~PL, generally in a firm condition		A/E*	0.4 0.5			-	
- 0.	⁶ FILL/CLAY: medium to high plasticity, grey and yellow-brown, w∼PL, generally in a firm condition, possibly natural		45	0.9				
- 1 .82		\bigotimes	A/E	1.0				Ť
- 1.	² CLAY CI-CH: medium to high plasticity, pale grey mottled yellow-brown, w <pl, apparently="" p="" residual<="" stiff,=""></pl,>		A/E	1.4 1.5				
-	Below 1.8m: apparently very stiff		AÆ	1.9				
-3								3
-4								4

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 37.1 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321510.8 NORTHING: 6258058.3 DIP/AZIMUTH: 90°/--

BORE No: BH 12 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

to the	Description	ic.		Sam		In Situ Testing	-	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	FILL/CLAY: low to medium plasticity, brown, with fine to coarse igneous gravel in the upper 0.3m, w <pl, generally<br="">in a firm condition</pl,>		A/E	0.0				
			A/E	0.4 0.5				
- - 1 -			A/E	0.9 1.0			-1	
			A/E	1.4 1.5			1	
- 1.8 2	CLAY CI-CH: medium to high plasticity, red-brown, trace fine to medium sand and ironstone gravel, w <pl, apparently firm, residual</pl, 		A/E	1.9 2.0			-2	2
- 2.5	Bore discontinued at 2.5m		A/E	2.4 —2.5—				
-3	Target depth reached						-3	

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PIL(A) Point load avial test 1s(50) (MPa)

 U,
 Tube sample (x mm dia.)
 PIL(D) Point load davianterial test 1s(50) (MPa)

 W
 Water sample
 PL(D) Point load davianterial test 1s(50) (MPa)

 W
 Water sample
 PL(D) Point load davianterial test 1s(50) (MPa)

 W
 Water seep
 S Standard penetration test

 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

Douglas Partners Geotechnics | Environment | Groundwater

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 33 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321436.9 NORTHING: 6257995.6 DIP/AZIMUTH: 90°/--

BORE No: BH 13 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

	Description	<u>.</u>		Sam	npling &	In Situ Testing	2	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILL/TOPSOIL/Sandy CLAY: low plasticity, grey, fine to medium, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>\otimes</td><td>A/E</td><td>0.0</td><td></td><td></td><td></td><td></td></pl,>	\otimes	A/E	0.0				
0.15	FILL/CLAY: medium plasticity, dark grey and red, w <pl, generally in a very stiff condition, possibly reworked natural</pl, 		A/E	0.4 0.5				
i			A/E	0.9 1.0			+ -1	
1.2	CLAY CH: high plasticity, dark grey mottled red, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E</td><td>1.4</td><td></td><td></td><td></td><td></td></pl,>		A/E	1.4				
2	Bore discontinued at 1.5m Target depth reached			-1.5-			-2	
1							-4	

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 P
 Piston sample

 U
 Tube sample (xmm dia.)

 W
 Vater sample

 P
 Water seep

 S
 Standard penetration test

 ample
 Water seep

 V
 Standard penetration test
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 37.6 AHD PROJECT: Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321318.5 NORTHING: 6257937.7 DIP/AZIMUTH: 90°/--

BORE No: BH 14 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

		Description	<u>c</u>		Sam		In Situ Testing		Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
H	10.22			A/E	0.0	o			
	0.08	FILL/Sandy GRAVEL: dark grey, fine igneous gravel, fine			0.1				
37 1 1	-	CLAY CI-CH: medium to high plasticity, red-brown with some pale grey, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.4 0.5				
	- 1 10		11	A/E	0.9			-	
33	-1 1.0	Bore discontinued at 1.0m Target depth reached			1.0			-2	
	2							-	

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U,
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 W
 Water sample
 PL

 W
 Water sample
 Standard penetration test

 mple
 Water level
 V
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 34 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321404 NORTHING: 6257950.1 DIP/AZIMUTH: 90°/--

BORE No: BH 15 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

Dout		Description	hic	-			In Situ Testing	5	Well
Depth (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
0	.2-	FILL/TOPSOIL/SILT: low plasticity, brown, trace fine to medium sand and rootlets, w <pl, a="" firm<br="" generally="" in="">condition</pl,>	R	A/E	0.0 0.1			-	
		CLAY CH: high plasticity, yellow-brown, w <pl, apparently="" firm,="" residual<="" td=""><td></td><td>A/E</td><td>0.4</td><td></td><td></td><td>6</td><td></td></pl,>		A/E	0.4			6	
					0.5				
1 1.	0-	Below 0.8m: apparently stiff		AÆ	0.9				
	.0	Bore discontinued at 1.0m Target depth reached			LU				
								-	
								-	
2								-2	
								a A	
								+	
								-	
3								-3	
								-	
								-	
4								-4	
8									
	1								

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U,
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 W
 Water sample
 PL

 W
 Water sample
 Standard penetration test

 mple
 Water level
 V
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 32.8 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321466.1 NORTHING: 6257976.5 DIP/AZIMUTH: 90°/--

BORE No: BH 16 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

Π		Description	<u>u</u>	4	Sam	npling &	In Situ Testing	2	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.3	FILL/TOPSOIL/Silty CLAY: medium plasticity, brown, trace rootlets and fine to medium gravel, w <pl, generally<br="">in a loose condition FILL/CLAY: medium plasticity, red-brown and brown, w<pl, a="" condition,="" firm="" generally="" in="" natural<="" reworked="" td=""><td></td><td>A/E A/E</td><td>0.0 0.1 0.4 0.5</td><td></td><td></td><td></td><td></td></pl,></pl,>		A/E A/E	0.0 0.1 0.4 0.5				
	-1			A/E	0.9 1.0				-
34				A/E	1.4 1.5				
	-2 2.1	CLAY CI-CH: medium to high plasticity, grey with some orange, w <pl, apparently="" residual<="" stiff,="" td=""><td>×</td><td>A/E</td><td>1.9 2.0</td><td></td><td></td><td></td><td>-2</td></pl,>	×	A/E	1.9 2.0				-2
	2.5			A/E	2.4 2.5				-
28	-4	Target depth reached							-4
RIC	G: Hanj	jin D13-8 DRILLER: Geosense		LOG	GED	: TM	CASI	NG: UI	ncased
WA		BORING: Solid Flight Auger (TC-bit) to 2.5m DBSERVATIONS: No free groundwater observed S:							

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 U
 Tube sample (xmm dia.)

 U
 Tube sample (xmm dia.)

 W
 Water sample

 W
 Water sample

 W
 Standard penetratinest its(50) (MPa)

 W
 Standard penetratine test

 Minipie
 Water sample
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 32.4 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321444.8 NORTHING: 6257939.6 DIP/AZIMUTH: 90°/--

BORE No: BH 17 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

Depth (m)	Description	<u>.</u>		Sam	npling &	In Situ Testing	2	Well
(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	FILL/Clayey SILT: low to medium plasticity, brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.0 0.1</td><td></td><td></td><td>-</td><td></td></pl,>		A/E	0.0 0.1			-	
			A/E*	0.4 0.5				
- 1			A/E	0.9 1.0			-1	
- 1.2	CLAY CI-CH: medium to high plasticity, red-brown, w <pl, apparently stiff, residual</pl, 		A/E	1.4 1.5				
-2 2.0	Bore discontinued at 2.0m		A/E	1.9 —2.0—				
-3	Target depth reached							

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 31.6 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321501.8 NORTHING: 6257953.1 DIP/AZIMUTH: 90°/--

BORE No: BH 18 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

Π		Description	.o	-	San	pling &	In Situ Testing	20	Well	Π
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	0.1	FILL/TOPSOIL/Silty CLAY: medium plasticity, brown, \trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>M</td><td>A/E</td><td>0.0</td><td></td><td></td><td></td><td></td><td></td></pl,>	M	A/E	0.0					
31		CLAY CH: high plasticity, red brown with some grey, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E*</td><td>0.4</td><td></td><td></td><td></td><td></td><td></td></pl,>		A/E*	0.4					
	- -1 1.0			A/E	0.9			-		
29 30 30	-2	Bore discontinued at 1.0m Target depth reached						-2		
28 28	-3							-3		
27								-		
TY W/ RE	PE OF E ATER OF MARKS MARKS Auger sat Bulk sam K Block sar Core drill Disturbed	ple P Piston sample PL(A) Point load axial test I: mple U. Tube sample (x mm dia) PL(D) Point load diametral t	ector (ppm) s(50) (MPa) test Is(50) (M r (kPa) test		GGED			NG: Uncas	Partnei	

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 39.4 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321338.3 NORTHING: 6257898.1 DIP/AZIMUTH: 90°/--

BORE No: BH 19 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	In Situ Testing	2	Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.074	CONCRETE: with 5mm diameter steel reinforcement at /\0.07m depth /	4.4.	С	0.0				
39		FILL/CLAY: medium plasticity, grey-brown, trace sand, rootlets and bricks to -0.15m, w <pl, a="" firm<br="" generally="" in="">condition</pl,>		A/E	0.4 0.5				
	1	Below 1.0m: trace medium sandstone gravel		A/E	0.9 1.0				1
38				A/E	1.4 1.5			-	
	1.6-	CLAY CI-CH: medium to high plasticity, red-brown, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td></td><td>1.9</td><td></td><td></td><td>-</td><td></td></pl,>			1.9			-	
	2			A/E	2.0			-	2
37	2.5	Bore discontinued at 2.5m		A/E	2.4 2.5			-	
36	3	Target depth reached							3

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PIL
 Pinto ionisation detector (ppm)

 U,
 Tube sample (x mm dia.)
 PIL(A) Point load avail test 1s(50) (MPa)

 W
 Water sample
 PIL(D) Point load diametral test 1s(50) (MPa)

 W
 Water sample
 Pocket penetrometer (kPa)

 e
 D
 Water seep
 S

 M
 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

Douglas Partners Geotechnics | Environment | Groundwater

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 31.4 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321492.2 NORTHING: 6257919.5 DIP/AZIMUTH: 90°/--

BORE No: BH 20 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

		Description	ic.		San	pling &	In Situ Testing		Well	
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	1	FILL/Silty CLAY: medium plasticity, dark brown, w <pl, generally in a firm condition</pl, 		A/E	0.0 0.1					
				*	0.4					
31	0.5	FILL/CLAY: medium plasticity, red-brown, w <pl,< td=""><td></td><td>A/E</td><td>0.4</td><td></td><td></td><td>-</td><td></td><td></td></pl,<>		A/E	0.4			-		
		generally in a stiff condition, possibly natural		*				-		
	1			A/E	0.9 1.0			-		
				*						
30				A/E	1.4 1.5			-		
				>	1.5					
					1.9			-		
	2			A/E	2.0				2	
	2.2-	CLAY CI-CH: medium to high plasticity, grey mottled red-brown, w <pl, apparently="" residual<="" stiff,="" td="" very=""><td>V</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl,>	V					-		
29	2.5	Bore discontinued at 2.5m		A/E	2.4 2.5					-
		Target depth reached								
	3							-	3	
28										
	4								1	
27								-		
								-		
•										1.1
	1 State 1 Stat	n D13-8 DRILLER: Geosense ORING: Solid Flight Auger (TC-bit) to 2.5m		LOC	GED	: TM	CASI	NG: Und	cased	
WA		SERVATIONS: No free groundwater observed								
A	Auger san Bulk samp	SAMPLING & IN SITU TESTING LEGEND	ector (ppm)				Sec. and		12000	
BLF C D E	Core drilli Disturbed	nple U _x Tube sample (x mm dia.) PL(D) Point load diametral ng W Water sample pp Pocket penetromete	test Is(50) (MPa) test Is(50) (N er (kPa) n test	/IPa)		Ф	Doug Geotechnics	las L Env	S Partne	ers

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) p Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) G & IN SITU TESTING Gas sample Piston sample Tube sample Water sample Water seep Water level (II)

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 29.7 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321558 NORTHING: 6257943.8 DIP/AZIMUTH: 90°/--

BORE No: BH 21 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

		Description	.c		Sam		In Situ Testing	2	Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-		FILL/TOPSOIL/Silty CLAY: low to medium plasticity, brown, trace rootlets, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>a</td><td>A/E</td><td>0.0</td><td></td><td>_</td><td>-</td><td></td></pl,>	a	A/E	0.0		_	-	
29 1 1 1 1	0.2	CLAY CI-CH: medium to high plasticity, red-brown mottled grey, w <pl, apparently="" residual<="" stiff,="" td=""><td></td><td>A/E</td><td>0.4 0.5</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.4 0.5				
	-1			A/E	0.9 1.0			-1	
	-2 -3	Bore discontinued at 1.1m Target depth reached						-2	

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U,
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 W
 Water sample
 PL

 W
 Water sample
 Standard penetration test

 mple
 Water level
 V
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 33.4 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321443.8 NORTHING: 6257902.1 DIP/AZIMUTH: 90°/--

BORE No: BH 22 PROJECT No: 99872.00 DATE: 18/1/2021 SHEET 1 OF 1

		Description	ic.		San	A	In Situ Testing	2	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/Clayey SILT: brown, trace rootlets and fine sand, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A/E</td><td>0.0 0.1</td><td></td><td></td><td></td><td></td></pl,>		A/E	0.0 0.1				
				>	0.4				
33				A/E	0.4				
	0.8			*					-
	1	CLAY CI-CH: medium to high plasticity, red-brown, w <pl, apparently="" residual<="" stiff,="" td=""><td>1</td><td>A/E</td><td>0.9 1.0</td><td></td><td></td><td></td><td>-1</td></pl,>	1	A/E	0.9 1.0				-1
32				A/E	1.4				
	1.5	Bore discontinued at 1.5m Target depth reached			-1.5-				-
	2								-2
									-
18									
	-3								-3
	2								-
30									-
									-
	4								-4
28									
									-
									-
RIC	6: Hanj	in D13-8 DRILLER: Geosense		LOC	GED	: TM	CASI	NG: U	Incased
WA	TER O	BORING: Solid Flight Auger (TC-bit) to 1.5m BSERVATIONS: No free groundwater observed							
RE	MARKS	SAMPLING & IN SITU TESTING LEGEND		_					
C	Auger sa Bulk san K Block sa Core dri	ample G Gas sample PID Photo ionisation deter nple P Piston sample PL(A) Point load axial test is annule U Tube sample (x mm dia) PI (D) Point load diametrati	ctor (ppm) s(50) (MPa) est Is(50) (M (kPa)	(Pa)		(h	Doug	la	s Partner
DE	Disturbe	ling W Water sample pp Pocket penetrometer ad sample ⊳ Water seep S Standard penetration mental sample ₹ Water level V Shear vane (kPa)	test			Y	Geotechnics	l Er	nvironment Groundwa

BOREHOLE LOG

CLIENT: PROJECT:

School Infrastructure New South Wales (SINSW) SURFACE LEVEL: 30.9 AHD Marsden H.S. Repurpose to Netball Facility LOCATION: Marsden High School, Ryde

EASTING: 321531.1 NORTHING: 6257901.3 DIP/AZIMUTH: 90°/--

BORE No: BH 23 PROJECT No: 99872.00 DATE: 19/1/2021 SHEET 1 OF 1

		Description	ic	-	Sam		In Situ Testing		Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/Sandy SILT: low plasticity, grey-brown, fine to medium sand, trace fine to medium shale gravel, w <pl, generally in a firm condition</pl, 		A/E A/E	0.0 0.1 0.4 0.5				
	0.7	SANDSTONE: pale yellow-grey, inferred low strength						-	
	0.8	Bore discontinued at 0.8m	1:1:::::						
28 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	Target depth reached						-1	
	3							-3	
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4							-4	
RIG		in D13-8 DRILLER: Geosense BORING: Solid Flight Auger (TC-bit) to 0.8m		LOG	GED	: TM	CASI	NG: Unca	ased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 P
 Piston sample

 U
 Tube sample (xmm dia.)

 W
 Vater sample

 P
 Vater seep

 S
 Standard penetration test

 B
 Vater seep

 Y
 Standard penetration test

 Ample
 Vater seep

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample C Core dnilling D Disturbed sample E Environmental sample

Sampling Methods

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
ine gravel	2.36 - 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

Term	Proportion of sand or gravel	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	>30%	Sandy Clay
With	15 - 30%	Clay with sand
Trace	0 - 15%	Clay with trace sand

In coarse grained soils (>65% coarse)

- with clays or silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils (>65% coarse) - with coarser fraction

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

May 2019

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	н	>200
Friable	Fr	1.1.1

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	Ľ.	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.
 Soil tends to stick together.
 Sand forms weak ball but breaks easily.
- Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to Is_{(50).} It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has a properties. Mass structure and material texture and fabric original rock are no longer visible, but the soil has not be significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour or original rock is not recognisable. Rock strengt significantly changed by weathering. Some primary min have weathered to clay minerals. Porosity may be incre by leaching, or may be decreased due to deposition weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching alon joints but shows little or no change of strength from fres rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW c	annot be differentia	ated use DW (see below)	
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % =

cumulative length of 'sound' core sections ≥ 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

Core drilling
Rotary drilling
Spiral flight augers
Diamond core - 52 mm dia
Diamond core - 47 mm dia
Diamond core - 63 mm dia
Diamond core - 81 mm dia

Water

\triangleright	Water seep
57	Infastan Laural

☑ Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
CV	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
co	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

са	calcite	
cbs	carbonaceous	
cly	clay	
fe	iron oxide	
mn	manganese	
slt	silty	

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

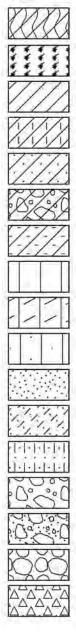
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General


0.00	<u>Ja</u> ~.	0.0	
	A.Z	24	
AN	XX	>.4	
K	\times	\boxtimes	

Asphalt Road base

Concrete

Filling

Topsoil Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

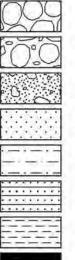
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Cobbles, boulders

Talus

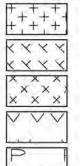
Sedimentary Rocks

Conglomerate Conglomeratic sandstone Sandstone Siltstone Laminite

Boulder conglomerate

Coal

Limestone


Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Mudstone, claystone, shale

Appendix G

Site Assessment Criteria

Appendix G Site Assessment Criteria Marsden High School, West Ryde

G1.0 Introduction

G1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

G1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: recreational.
 - o Corresponding to land use category 'C', defined as public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.
- Land use: commercial / industrial.
 - o Corresponding to land use category 'D', defined as commercial / industrial such as shops, offices, factories and industrial sites for vapour intrusion HSL only.
- Soil type: clay.

G2.0 Soils

G2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Contaminant	HIL-C
Metals	
Arsenic	300
Cadmium	90
Chromium (VI)	300
Copper	17 000
Lead	600
Mercury (inorganic)	80
Nickel	1200
Zinc	30 000
РАН	
B(a)P TEQ	3
Total PAH	300
Phenols	
Phenol	40 000
Pentachlorophenol	120
OCP	
DDT+DDE+DDD	400
Aldrin and dieldrin	10
Chlordane	70
Endosulfan	340
Endrin	20
Heptachlor	10
НСВ	10
Vethoxychlor	400
OPP	
Chlorpyrifos	250
РСВ	
РСВ	1

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HSL-D	HSL-D
CLAY	0 m to <1 m	1 m to <2 m
Benzene	4	6
Toluene	NL	NL
Ethylbenzene	NL	NL
Xylenes	NL	NL
Naphthalene	NL	NL
TRH F1	310	480
TRH F2	NL	NL

Table 2: Health Screening Levels (mg/kg)

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Contaminant	DC HSL-C
Benzene	120
Toluene	18 000
Ethylbenzene	5300
Xylenes	15 000
Naphthalene	1900
TRH F1	5100
TRH F2	3800
TRH F3	5300
TRH F4	7400

Notes: TRH F1 is TRH C_{6} - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

G2.2 Asbestos in Soil

Based on the CSM and/or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore,

Page 4 of 6

the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation as an initial screen.

G2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 5, with inputs into their derivation shown in Table 4.

Variable Input Rationale Age of contaminants "Aged" (>2 years) pH 5.22 Average pH of measured results from analytical laboratory results. CEC 5.46 cmolc/kg Average CEC of measured results from analytical laboratory results. Clay content 10% Assumed based on lithology encountered during investigation. Traffic volumes The site is located in an established High residential setting. State / Territory NSW

Table 4: Inputs to the Derivation of the Ecological Investigation Levels

Table 5: Ecological Investigation Levels (mg/kg)

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	130
Nickel	45
Chromium III	410
Lead	1100
Zinc	280
РАН	-
Naphthalene	170
ОСР	
DDT	180

G2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 6.

Contaminant	Soil Type	EIL-A-B-C
Benzene	Fine	65
Toluene	Fine	105
Ethylbenzene	Fine	125
Xylenes	Fine	45
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Fine	1300
TRH F4	Fine	5600
B(a)P	Fine	0.7

Table 6: Ecological Screening Levels (mg/	(g)
---	-----

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH >C10-C16 including naphthalene

G2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure eg: penetration of, or damage to, in-ground services.

The adopted management limits are in Table 7.

Table 7: Management Limits (mg/k	q)
----------------------------------	----

Contaminant	Soil Type	ML-A-B-C
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Notes: TRH F1 is TRH C_6 - C_{10} including BTEX TRH F2 is TRH F2 > C_{10} - C_{16} naphthalene

G3.0 References

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater*. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC, NRMMC. (2016). *Australian Drinking Water Guidelines 6 2011, Version 3.2.* Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Douglas Partners Pty Ltd

D21/78776

Appendix H

Summary of Laboratory Results

Table H1: Summary of Laboratory Results - Site Assessment Criteria for Metals, TRH, BTEX and PAH

				r								-							11-2270				1221		
							Me	etals	0					TI	RH				BT	EX	1		PA	АН	
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.5
Site Assessment Cr	riteria - Recreatio	nal Land Use						<u></u>																	
HIL C - Recreational	/ Open Space			300	90	300	17,000	600	80	1200	30,000													3	300
HSL D - Commercial	/ Industrial 0- <1n	n / 1-2m Fine							2					310 / 480	NL		12	4/6	NL	NL	NL	NL	22		110000027200
EIL/ESL - Urban Res	sidential and Publi	ic Open Space Fi	ne	100		410	130	1100		45	280		120	180	120	1.300	5,600	65	105	125	45	170	0.7		
Management Limit - F				1	6	1.000-1969 			0	Controller			and and a second s	800	1,000	3,500	10,000		199094 or the		1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1		nawnw C		
Direct Contact - HSL		Open Space												5,100	3,800	5,300	7,400	120	18,000	5,300	15,000	1,900			
Laboratory Results															1	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-,	1				
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
-				6	<0.4	14	11	66	<0.1	4	33	<25	69	<25	69	160	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
BH1	0 - 0.1 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH1	0.4 - 0.5 m	CLAY	18/01/2021	8	<0.4	12	8	12	<0.1	2	5	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
		5		300 100 4	90 NC <0.4	300 410 12	17000 130 12	600 1100 16	80 NC	1200 45 7	30000 280 15	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	NC 5600	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH2	0.4 - 0.5 m	FILL	19/01/2021	4 300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120		NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125		NL 170	NC 0.7	3 NC	300 NC
BH2	1.4 - 1.5 m	CLAY	19/01/2021	4	<0.4	10	9	14	<0.1	2	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
DHZ	1.4 - 1.5 m	CLAT	19/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120		NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125		NL 170	NC 0.7	3 NC	300 NC
BH3	0 - 0.1 m	FILL	18/01/2021	<4	<0.4	69	49	5	<0.1	57	33	<25	<50	<25	<50	870	2100	<0.2	<0.5	<1	<1	<1	0.07	<0.5	<0.5
		-		300 100 7	90 NC <0.4	300 410 14	17000 130 14	600 1100 16	80 NC	1200 45 5	30000 280 10	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	NC 5600	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH4	0.4 - 0.5 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BD1/20210118*	0.4 - 0.5 m	FILL	18/01/2021	6	<0.4	15	14	14	<0.1	6	11	<25	<50	<25	<50	<100	240	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
55120210110	0.4 0.5 m		10/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	Second and a	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	1953	NL 170	NC 0.7	3 NC	300 NC
BH4	2 - 2.1 m	CLAY	18/01/2021	NT 300 100	NT	NT 300 410	NT	NT 600 1100	NT	NT 1200 60	NT	NT	NT NC 400	NT 100	NT 100	NT ADDD	NT 5600	NT	NT 405	NT	NT NL 45	NT 170	NT NC 0.7	NT 3 NC	NT 300 NC
2)		1	55070.070400.60949595.00	8	90 NC <0.4	17	17000 130 12	22	80 NC	7	30000 190 27	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	<100	4 65 <0.2	NL 105	NL 125	NL 45	<u>×1</u>	0.07	3 NC <0.5	300 NC <0.5
BH5	1 - 1.1 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH5	2 - 2.1 m	FILL	18/01/2021	4	<0.4	16	8	17	<0.1	4	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
10000000		i in the second s		300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH5	2.9 - 3 m	CLAY	18/01/2021	10 300 100	<0.4 90 NC	21 300 410	11 17000 130	19 600 1100	<0.1 80 NC	3 1200 45	10 30000 280	<25	<50 NC 120	<25 310 180	<50	<100	<100	<0.2 4 65	<0.5	<1 NL 125	<1 NL 45	<1 NL 170	<0.05 NC 0.7	<0.5 3 NC	<0.5 300 NC
DUR	0.04m	EUL	40/04/2024	4	<0.4	8	4	19	<0.1	3	19	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
BH6	0 - 0.1 m	FILL	19/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH7	0.4 - 0.5 m	FILL	19/01/2021	5	<0.4	12	46	38	<0.1	5	24	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1	<0.5	<0.5
				300 100 5	90 NC <0.4	300 410 14	17000 130 20	600 1100 42	80 NC <0.1	1200 45 4	30000 280 26	NC NC	NC 120	310 180 NT	NL 120 NT	NC 1300 NT	NC 5600 NT	4 65 NT	NL 105 NT	NL 125 NT	NL 45	NL 170 NT	NC 0.7 NT	3 NC NT	300 NC NT
BH7 - [TRIPLICATE]	0.4 - 0.5 m	FILL	19/01/2021	300 100	90 NC	300 410	17000 130	42	80 NC	1200 45	30000 280	NC NC	NC 120	COLUMN TO STATE	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	100000	NL 170	NC 0.7	3 NC	300 NC
BH7	1.4 - 1.5 m	FILL	19/01/2021	6	<0.4	13	19	39	<0.1	7	82	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1	<0.5	<0.5
	1.4 - 1.3 III	FILL	19/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC

Table H1: Summary of Laboratory Results - Site Assessment Criteria for Metals, TRH, BTEX and PAH

							Me	etals						Т	RH				BT	EX			PA	ΛH	
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.5
Site Assessment C	riteria - Recreatio	onal Land Use																							
HIL C - Recreational	/ Open Space			300	90	300	17,000	600	80	1200	30,000													3	300
HSL D - Commercial	/ Industrial 0- <1r	n / 1-2m Fine		8 74 										310 / 480	NL			4/6	NL	NL	NL	NL			
EIL/ESL - Urban Re	sidential and Publ	ic Open Space Fi	ne	100		410	130	1100		45	280		120	180	120	1,300	5,600	65	105	125	45	170	0.7		
Management Limit -	R / P / POS Fine			1	1.				10		0.			800	1,000	3,500	10,000	-			90-		а 		
Direct Contact - HSL	C - Recreational	/ Open Space												5,100	3,800	5,300	7,400	120	18,000	5,300	15,000	1,900			
Laboratory Results										•				•											
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH7	2.4 - 2.5 m	FILL	19/01/2021	6 300 100	<0.4	20 300 410	13 17000 130	20	<0.1 80 NC	4 1200 45	11 30000 280	<25 NC NC	<50 NC 120	<25 310 180	<50 NL 120	<100 NC 1300	<100 NC 5600	<0.2	<0.5 NL 105	<1 NL 125	<1 NL 45	<1 NL 170	<0.05	<0.5 3 NC	<0.5 300 NC
BH8	0 - 0.1 m	FILL	19/01/2021	<4 300 100	<0.4	11 300 410	22 17000 130	21 600 1100	<0.1	7 1200 45	41 30000 280	<25	<50 NC 120	<25 310 180	<50	<100 NC 1300	<100 NC 5600	<0.2	<0.5	<1 NL 125	<1 NL 45	<1 NL 170	0.06 NC 0.7	<0.5 3 NC	<0.5 300 NC
BH8	0.4 - 0.5 m	FILL	19/01/2021	6 300 100	<0.4	13 300 410	23 17000 130	19 600 1100	<0.1	11 1200 45	49 30000 280	<25	<50 NC 120	<25 310 180	<50	<100	<100	<0.2 4 65	<0.5	<1 NL 125	<1 NL 45	<1 NL 170	<0.05	<0.5	<0.5 300 NC
BH8	2 - 2.1 m	FILL	19/01/2021	10	<0.4	8	29	15	<0.1	8	47 30000 280	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5 300 NC
BH8	3.5 - 3.6 m	CLAY	19/01/2021	300 100 <4	90 NC <0.4	300 410 7	7	600 1100 27	80 NC <0.1	1200 45 2	12	NC NC <25	NC 120	<25	NL 120	NC 1300 <100	NC 5600 <100	4 65 <0.2	NL 105	NL 125	<1	NL 170 <1	NC 0.7 <0.05	3 NC <0.5	<0.5
BD10/20210119*	3.5 - 3.6 m	CLAY	19/01/2021	<u>300</u> 100 6	90 NC <0.4	300 410 8	10	<u>600</u> 1100 20	80 NC <0.1	1200 45 2	<u>30000</u> 280 10	NC NC <25	NC 120	<25	NL 120	NC 1300 <100	NC 5600 <100	4 65 <0.2	NL 105	NL 125	<1	NL 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH9	0 - 0.1 m	FILL	19/01/2021	300 100 7	90 NC <0.4	300 410 15	17000 130 38	600 1100 110	80 NC 0.4	1200 45 12	30000 280 220	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300 <100	NC 5600 <100	4 65 <0.2	NL 105	NL 125 <1	NL 45	NL 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH9	0.4 - 0.5 m	CLAY	19/01/2021	300 100 NT	90 NC NT	300 410 NT	17000 130 NT	600 1100 NT	80 NC	1200 45 NT	30000 280 NT	NC NC NT	NC 120	310 180 NT	NL 120 NT	NC 1300 NT	NC 5600 NT	4 65 NT	NL 105 NT	NL 125 NT	NL 45 NT	NL 170 NT	NC 0.7 NT	3 NC NT	300 NC NT
BH10	0 - 0.1 m	FILL	19/01/2021	300 100 5	90 NC <0.4	300 410 12	17000 130 19	600 1100 25	80 NC <0.1	1200 60 13	30000 190 39	NC NC <25	NC 120	310 180 <25	NL 120 <50	NC 1300 <100	NC 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125 <1	NL 45	NL 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
		55 - 38 3365 2		300 100 <4	90 NC <0.4	300 410 68	17000 130 20	600 1100 7	80 NC <0.1	1200 45 54	30000 280 32	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	NC 5600 550	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH11	0 - 0.1 m	FILL	18/01/2021	300 100 8	90 NC <0.4	300 410 23	17000 130 11	600 1100 23	80 NC	1200 45 4	30000 280 14	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	NC 5600 <100	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC <0.5	300 NC <0.5
BH11	0.4 - 0.5 m	FILL	18/01/2021	300 100 9	90 NC <0.4	300 410 23	17000 130 12	600 1100 22	80 NC	1200 45 5	30000 280 14	NC NC <25	NC 120	310 180 <25	NL 120	NC 1300	NC 5600 <100	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC <0.5	300 NC <0.5
BD2/20210118*	0.4 - 0.5 m	FILL	18/01/2021	300 100 8	90 NC	300 410 16	17000 130 11	600 1100 20	80 NC	1200 45	30000 280	NC NC <25	NC 120	1 1 2 2 1 1 2 2 2 2	NL 120	NC 1300	NC 5600 <100	4 65 <0.2	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC <0.5	300 NC <0.5
BH11	0.9 - 1 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH12	0.4 - 0.5 m	FILL	19/01/2021	7 300 100	<0.4 90 NC	13 300 410	2005	and see	010 0	2003	16 30000 280	<25 NC NC		without and	<50 NL 120	<100 NC 1300	<100 NC 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125		<1 NL 170	0.1 NC 0.7	<0.5 3 NC	<0.5 300 NC
BH13	0 - 0.1 m	FILL	19/01/2021	<4 300 100	<0.4 90 NC	6 300 410	8 17000 130	15 600 1100	<0.1 80 NC	3 1200 45	26 30000 280	<25	<50 NC 120	<25 310 180	<50 NL 120	<100 NC 1300	<100 NC 5600	<0.2 4 65	<0.5 NL 105	<1 NL 125	<1 NL 45	<1 NL 170	<0.05 NC 0.7	<0.5 3 NC	<0.5 300 NC
BH13	0.9 - 1 m	FILL	19/01/2021	<4 300 100	<0.4 90 NC	12 300 410	16 17000 130	15 600 1100	<0.1 80 NC	7 1200 45	17 30000 280	<25 NC NC	<50 NC 120	<25 310 180	<50 NL 120	<100 NC 1300	<100 NC 5600	<0.2	<0.5 NL 105	<1 NL 125	<1 NL 45	<1 NL 170	<0.05 NC 0.7	<0.5 3 NC	<0.5 300 NC
BH13	1.4 - 1.5 m	CLAY	19/01/2021	NT 300 100	NT 90 NC	NT 300 410	NT 17000 130	NT 600 1100	NT 80 NC	NT 1200 60	NT 30000 190	NT NC NC	NT NC 120	NT 310 180	NT NL 120	NT NC 1300	NT NC 5600	NT 4 65	NT NL 105	NT NL 125	NT NL 45	NT NL 170	NT NC 0.7	NT 3 NC	NT 300 NC

Table H1: Summary of Laboratory Results - Site Assessment Criteria for Metals, TRH, BTEX and PAH

							Me	etals						TI	RH				B	TEX			PA	ιH	
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
			PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.5
ite Assessment C	riteria - Recreatio	onal Land Use									1.11		n 101.0										1		
IIL C - Recreationa	I / Open Space			300	90	300	17,000	600	80	1200	30,000													3	300
ISL D - Commercia	al / Industrial 0- <1	m / 1-2m Fine				-	2017- A	1	-				1	310 / 480	NL			4/6	NL	NL	NL	NL			-
IL/ESL - Urban Re	esidential and Pub	lic Open Space F	ine	100		410	130	1100		45	280		120	180	120	1,300	5,600	65	105	125	45	170	0.7		-
/lanagement Limit -	R / P / POS Fine													800	1,000	3,500	10,000								
Direct Contact - HSI	L C - Recreational	/ Open Space												5,100	3,800	5,300	7,400	120	18,000	5,300	15,000	1,900			
aboratory Results	and the second														and a second second	1	- 2.4.3271					a second a	-		
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH14	0.4 - 0.5 m	CLAY	18/01/2021	10	<0.4	19	11	17	<0.1	2	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
BH14	0.4 - 0.5 11	CLAT	16/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH15	0 - 0.1 m	FILL	18/01/2021	12	<0.4	8	10	28	<0.1	4	33	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
				300 100 15	90 NC <0.4	300 410 11	17000 130	600 1100 26	<0.1	1200 45 5	30000 280 29	NC NC <25	NC 120 <50	310 180 <25	NL 120 <50	NC 1300 <100	NC 5600 <100	4 65 <0.2	NL 105 <0.5	NL 125	NL 45	NL 170	NC 0.7 <0.05	3 NC <0.5	300 NC <0.5
BH16	0 - 0.1 m	FILL	19/01/2021	300 100	90 NC	300 410		600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH16	0.9 - 1 m	FILL	19/01/2021	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
bitto	0.3 - 1 11	TILL	19/01/2021	300 100	90 NC	300 410		600 1100	80 NC	1200 60	30000 190	NC NC	NC 120		NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH17	0.4 - 0.5 m	FILL	19/01/2021	10	<0.4	21 300 410	18	38 600 1100	0.1	8	41	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.07	<0.5	<0.5
davent.				300 100 25	90 NC <0.4	300 410 11	17000 130 42	600 1100 29	80 NC	1200 45	30000 280 40	NC NC <25	NC 120	<25	NL 120	NC. 1300 <100	NC 5600	4 65 <0.2	NL 105 <0.5	NL 125	NL 45	NL 170	NC 0.7 <0.05	3 NC <0.5	<0.5
BH18	0 - 0.1 m	FILL	19/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NG	300 NC
BH19	0.4 - 0.5 m	FILL	18/01/2021	7	<0.4	20	12	42	<0.1	5	22	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
				300 100	90 NC	300 410		600 1100	80 NC	1200 45	30000 280	NC NC	NC 120			NC 1300	NC 5600	4 65	NI_ 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH19	1.4 - 1.5 m	FILL	18/01/2021	NT 300 100	NT 90 NC	NT 300 410	NT 17000 130	NT 600 1100	NT 80 NC	NT 1200 60	NT 30000 190	NT NC NC	NC 120	NT 310 180	NT NL 120	NT NC: 1300	NC 5600	NT 65	NL 105	NT NL 125	NT NL 45	NT 170	NT NC 0.7	NT 3 NC	NT 300 NC
21122			101010001	7	<0.4	17	12	24	<0.1	7	35	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.06	<0.5	<0.5
BH20	0 - 0.1 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	600 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH21	0 - 0.1 m	FILL	19/01/2021	6	<0.4	14	25	25	<0.1	7	44	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
				300 100 6	90 NC <0.3	300 410 13	17000 130 18	600 1100 32	80 NC <0.05	1200 45 7.5	30000 280 53	NC NC <25	NC 120 <50	310 180 <25	NL 120 <50	NC 1300	NC 5600 <120	4 65 <0.1	NL 105 <0.1	NL 125	NL 45	NL 170	NC 0.7 <0.1	3 NC <0.2	300 NC <0.8
BD6/20210119*	0 - 0.1 m	FILL	18/01/2021	300 100	40.3 90 NC	13 300 410		600 1100	40.05	1200 45	53 30000 280	NC' NC	<50 NC 120	310 180	<50 NL 120	×90	×120 NC 5600	4 65	×0.1	×0.1	<0.3 NL 45	×0.1	NC 0.7	3 NC	300 NC
PLIDO	04.05-	Ent	19/04/2024	6	<0.4	17	3	15	<0.1	2	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.5
BH22	0.4 - 0.5 m	FILL	18/01/2021	300 100	90 NC	300 410	17000 130	800 1100	80 NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 NC
BH23	0.4 - 0.5 m	FILL	19/01/2021	8	<0.4	12	17	24	<0.1	3	20	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4	0.5	0.5
				300 100	90 NC	300 410	17000 130	600 1100	BO NC	1200 45	30000 280	NC NC	NC 120	310 180	NL 120	NC 1300	NC 5600	4 65	NL 105	NL 125	NL 45	NL 170	NC 0.7	3 NC	300 N

Lab result HIL/HSL value EIL/ESL value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected at the reporting limit

Notes:

HIL/HSL/DC NEPC, Schedule B1 - HIL C (undefined), HSL A/B (undefined), DC HSL B (undefined)

- EIL/ESL NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)
- ML NEPC, Schedule B1 - ML R/P/POS (undefined)
- a QA/QC replicate of sample listed directly below the primary sample

b Reported naphthalene laboratory result obtained from BTEXN suite

- С Ecological criteria applies to DDT only
- Blind replicates are reported below the primary parent sample

Table H2: Summary of Laboratory Results – Site Assessment Criteria for Phenol, OCP, OPP, PCB and Asbestos

				Phenol						OCP						OPP	PCB		Asbestos	
		c		Phenol	οοτ+οοΕ+οοο ^c	DDD	DDE	рот	& Dieldrin	Total Chlordane	otal Endosulfan	Endrin	Heptachlor	robenzene	Methoxychlor	Chlorpyriphos	Total PCB	i ID in soil Ig/kg	Analysis	stos (50 g)
				Ч	DDT+DC	٥	٥	٥	Aldrin 8	Total C	Total Er	Ē	Hept	Hexachlor	Metho	Chlorp	Tota	Asbestos >0.1	Trace	Asbest
			PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			[
ite Assessment Cr		nal Land Use																		
IL C - Recreational				120*	400				10	70	340	20	10	10	400	250	1			
SL D - Commercial																			No Asbestos	s
IL/ESL - Urban Re	sidential and Publ	ic Open Space Fi	ine		180			180			2									
anagement Limit - I	R / P / POS Fine																			
irect Contact - HSL	C - Recreational	Open Space																		
aboratory Results																				
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	1070	()	
BH1	0 - 0.1 m	FILL	18/01/2021	<5 120 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NA
BH1	0.4 - 0.5 m	CLAY	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	N
BH2	0.4 - 0.5 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NA
BH2	1.4 - 1.5 m	CLAY	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	N
BH3	0 - 0.1 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1 NC NC	<0.1	<0.1 NC 180	<0.1	<0.1 70 NC	<0.1 340 NC	<0.1 20 NC	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1 1 NC	NAD	NAD	NA
BH4	0.4 - 0.5 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1 1 NC	NAD	NAD	NA
BD1/20210118*	0.4 - 0.5 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1 10 NC	<0.1 70 NC	<0.1 340 NC	<0.1 20 NC	<0.1	<0.1	<0.1 400 NC	<0.1 250 NC	<0.1 1 NC	NT	NT	N
BH4	2 - 2.1 m	CLAY	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH5	1 - 1.1 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1		<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NA
BH5	2 - 2.1 m	FILL	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NA
BH5	2.9 - 3 m	CLAY	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	N
BH6	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NA
BH7	0.4 - 0.5 m	FILL	19/01/2021	<5 120 NC NT	<0.1 400 180 NT	<0.1 NC NC NT	<0.1 NC NC NT	<0.1 NC 180 NT	<0.1 10 NC NT	<0.1 70 NC NT	<0.1 340 NC NT	<0.1 20 NC NT	<0.1 10 NC NT	<0.1 10 NC NT	<0.1 400 NC NT	<0.1 250 NC NT	<0.1 1 NC NT	NAD	NAD	NA
3H7 - [TRIPLICATE]	0.4 - 0.5 m	FILL	19/01/2021	120 NC NT	400 180 NT	NC NC	NC NC	NC 180	10 NC	70 NC	340 NC	20 NC	10 NC	10 NC	400 NC	250 NC	1 NC NT	NT	NT	N
BH7	1.4 - 1.5 m	FILL	19/01/2021	120 NC NT	400 180 NT	NC NC	NC NC	NC 180	10 NC NT	70 NC	340 NC	20 NC	10 NC NT	10 NC NT	400 NC	250 NC	1 NC NT	NAD	NAD	NA
BH7	2.4 - 2.5 m	FILL	19/01/2021	120 NC		NC NC	NC NC	NC 180	10 NC		340 NC	20 NC	10 NC	10 NC	400 NC	250 NC	1 NC	NT	NT	N

Marsden High School Repurposed into a Netball Facility Marsden High School, West Ryde

Table H2: Summary of Laboratory Results – Site Assessment Criteria for Phenol, OCP, OPP, PCB and Asbestos

		· · · · · · · · · · · · · · · · · · ·		Phenol						OCP						OPP	PCB		Asbestos	
				Phenol	рот+оре+оро ^с	ססס	DDE	рот	Aldrin & Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos (50 g)
		10	PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		1	
ite Assessment Cr	riteria - Recreatio	nal Land Use							1990	17,707			1000							
IL C - Recreational	/ Open Space			120*	400				10	70	340	20	10	10	400	250	1		1	
SL D - Commercial	/ Industrial 0- <1n	n / 1-2m Fine																	No Asbestos	5
L/ESL - Urban Re	sidential and Publ	ic Open Space Fi	ine		180			180								N				
anagement Limit - I	R / P / POS Fine								8											
irect Contact - HSL	C - Recreational	Open Space														7			7	
aboratory Results		16: 016).																		
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	1050	(1 	÷
BH8	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH8	0.4 - 0.5 m	FILL	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD
BH8	2 - 2.1 m	FILL	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD
BH8	3.5 - 3.6 m	CLAY	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BD10/20210119*	3.5 - 3.6 m	CLAY	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH9	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1 70 NC	<0.1 340 NC	<0.1 20 NC	<0.1	<0.1	<0.1	<0.1	<0.1 1 NC	NAD	NAD	NAD
BH9	0.4 - 0.5 m	CLAY	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH10	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1	<0.1 70 NC	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1 400 NC	<0.1 250 NC	<0.1 1 NC	NAD	NAD	NAD
BH11	0 - 0.1 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1 10 NC	<0.1 70 NC	<0.1 340 NC	<0.1 20 NC	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1 1 NC	NAD	NAD	NAD
BH11	0.4 - 0.5 m	FILL	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD
BD2/20210118*	0.4 - 0.5 m	FILL	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH11	0.9 - 1 m	FILL	18/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD
BH12	0.4 - 0.5 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NAD
BH13	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH13	0.9 - 1 m	FILL	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH13	1.4 - 1.5 m	CLAY	19/01/2021	NT 120 NC	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH14	0.4 - 0.5 m	CLAY	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NAD
BH15	0 - 0.1 m	FILL	18/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NAD

Table H2: Summary of Laboratory Results – Site Assessment Criteria for Phenol, OCP, OPP, PCB and Asbestos

				Phenol		_				OCP				6		OPP	PCB		Asbestos	
				Phenol	00T+00E+000 ^C	aaa	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos (50 g)
			PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
ite Assessment C	riteria - Recreatio	nal Land Use	1								<u></u>		1							
L C - Recreational	I / Open Space			120*	400		-		10	70	340	20	10	10	400	250	1			
SL D - Commercia	l / Industrial 0- <1m	n / 1-2m Fine				1			1			1							No Asbestos	5
L/ESL - Urban Re	esidential and Publi	c Open Space I	Fine	1	180			180			ú			1						de est
anagement Limit -	R / P / POS Fine			4				1				ļ	· · · · · · ·	1	1					÷
irect Contact - HSL	C - Recreational /	Open Space		1	1					1	·		·	(1	·		
aboratory Results	5																			
Sample ID	Depth	Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		1.422	2
BH16	0 - 0.1 m	FILL	19/01/2021	<5 120 NC	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NAD
BH16	0.9 - 1 m	FILL	19/01/2021	NT 120 NC	NT 400 180	NT	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH17	0.4 - 0.5 m	FILL	19/01/2021	<5 120 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH18	0 - 0.1 m	FILL	19/01/2021	NT 120 NC	NT	NT NC NC	NT NC NC	NT NC 180	NT	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT NC	NAD	NAD	NAD
BH19	0.4 - 0.5 m	FILL	18/01/2021	<5 120 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH19	1.4 - 1.5 m	FILL	18/01/2021	NT 120 NC	NT	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NT	NT	NT
BH20	0 - 0.1 m	FILL	18/01/2021	<5 120 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH21	0 - 0.1 m	FILL	19/01/2021	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.1 250 NC	<0.1	NAD	NAD	NAD
BD6/20210119*	0 - 0.1 m	FILL	19/01/2021	<0.5	<0.1 400 180	<0.1	<0.1	<0.1 NC 180	<0.2	<0.1	<0.1 340 NC	<0.1	<0.1	<0.1	<0.1	<0.2 250 NC	<1 1 NC	NT	NT	NT
BH22	0.4 - 0.5 m	FILL	18/01/2021	NT	NT 400 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 70 NC	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD
BH23	0.4 - 0.5 m	FILL	19/01/2021	NT 120 NC	NT	NT NC: NC	NT NC NC	NT NC 180	NT	NT	NT 340 NC	NT 20 NC	NT 10 NC	NT 10 NC	NT 400 NC	NT 250 NC	NT 1 NC	NAD	NAD	NAD

Lab result

HIL/HSL value EIL/ESL value 📒 HIL/HSL exceedance 📕 EIL/ESL exceedance 📒 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected at the reporting limit

Notes:

HIL/HSL/DC NEPC, Schedule B1 - HIL C (undefined), HSL A/B (undefined), DC HSL B (undefined) EIL/ESL NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)

- ML NEPC, Schedule B1 - ML R/P/POS (undefined)
- a QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite
- С Ecological criteria applies to DDT only
- Blind replicates are reported below the primary parent sample

Marsden High School Repurposed into a Netball Facility

Marsden High School, West Ryde

Table H3: Summary of Laboratory Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB and Asbestos

								Me	etals					m	RH			BT	rex			1					
	1			Arsenic	Cadmium	Total Chromium	Copper	Lead	TCLP Lead	Mercury (inorganic)	Nickei	TCLP Nickel	Zinc	TRH 06 - C9	C10-C36 recoverable hydrocarbone	Benzane	Toluene	Ethylbanzene	m+p-Xylene	o.Xylane	Xylanes (total)	đenzo(a)pyrene (BaP)	Acenaphthene	Acenaphthylene	Anthraoane	Benzo(a)anthraoene	enzo(b. +k)fluoranthen 6
-	-		PQL	4	0.4	1	1	1	0.03	0.1	1	0.02	1	25	50	0.2	0.5	t	2	1	3	0.05	0.1	0.1	0.1	0.1	0.2
Sample ID	Depth	Soil Matrix	Sample Date	mg/kg	mig/kg	mg/kg	mg/kg	mg/kg	mg/l	mg/kg	mg/kg	mg/l	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Waste Classificatio	ion Criteria		the of the order	-						1 June																	
	CT1			100	20	100	NC	100	N/A	4	40	N/A	NC	650	10000	10	288	600	NC	NC	1000	0.8	NC	NC	NC	NC	NC
	SCC			500 N/A	100 N/A	1900 N/A	NC NC	1500 N/A	N/A 5	50 N/A	1050 N/A	N/A 2	NC NC	650 N/A	10000 N/A	18 N/A	518 N/A	1080 N/A	NC NC	NC NC	1800 N/A	1D N/A	NC NC	NC NC	NC	NC NC	NC NC
	CT2			400	N/A 80	400	NC	400	5 N/A	16	160	N/A	NC	2600	40000	40	1152	2400	NC.	NC	4000	3.2	NC	NC	NC	NC	NC
	SCC			2000	400	7600	NC	6000	N/A	200	4200	N/A	NC	2600	40000	72	2073	4320	NC	NC	7200	23	NC	NC	NC	NC	NC
	TCLP			N/A	N/A	N/A	NC	N/A	20	N/A	N/A	8	NC	N/A	N/A	N/A	N/A	N/A	NC	NC	N/A	N/A	NC	NC	NC	NC	NC
Published Backgro	ound Values ANZECC (1	0.2-30	0.04-2	0.5-110	1-190	<2-200	1 5	0.001-0.1	2-400		2-180		1	0.05 - 1	0.1 - 1	[-		-				1			
	ANZECC			1-53	0.016-0.78	2.5-673	0.4-412	2-81	i letter	-	1-517	-	1-263	1.1						-		-			-		
Laboratory Results	1				1	F	r	10 - 34	T.	I. same		r	L 19-1	1	T		I. and	T	1	B	n	1	1	T ase		T. Martin	1
BH1 BH1	0-0.1 m 0.4-0.5 m	FILL CLAY	18/01/2021 18/01/2021	6	<0.4	14	11	66 12	-	<0.1 <0.1	4		33 5	<25 <25	193 <50	<0.2	<0.5	<1	2 2	<1 <1	3	<0.05	<0.1	<0.1	<0.1 <0.1	<0.1	<0.2 <0.2
BH2	0.4 - 0.5 m	FILL	19/01/2021	4	<0.4	12	12	16	9	<0.1	7		15	<25	<50	<0.2	<0.5	<1	2	4	3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
BH2	1.4 - 1.5 m	CLAY	19/01/2021	4	⊲0.4	10	9	14		⊲0.1	2	9 1	7	<25	<50	<0.2	<0,5	<1	<2	<1	3	<0.05	<0.1	<0.1	⊲0.1	<0.1	<0.2
BH3	0-0.1 m	FILL	18/01/2021	<4	⊲0.4	69	49	5	ы	<0.1	57	0.02	33	<25	920	⊲0.2	<0.5	<1	4	<1	3	0.07	<0.1	<0.1	<0.1	<0.1	≪0.2
BH4 BD1/20210118*	0.4 - 0.5 m	FILL	18/01/2021 18/01/2021	7	<0.4 <0.4	14	14	16 14	NT NT	<0.1 <0.1	5	NT	10	<25 <25	<50	<0.2 ⊲0.2	<0.5 <0.5	<1 <1	2	ব	3	<0.05	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.2 ≼0.2
BHS	1-1.1 m	FILL	18/01/2021	8	<0.4	17	12	22		<0.1	7		27	<25	<50	<0.2	<0.5	<1	<2	<1	3	0.07	<0.1	<0.1	<0.1	<0.1	<0.2
BH5	2 - 2.1 m	FILL	18/01/2021	4	⊲0.4	16	8	17		≪0,1	4		6	<25	<50	⊲0.2	<0,5	<1	<2	<1	3	<0.05	<0.1	<0.1	⊲0.1	<0.1	<0.2
BHS	2.9-3 m	CLAY	18/01/2021	10	≪0.4	21 8	11	19	9	<0.1	3		10	<25	<50	<0.2	<0.5	<1	2	<t i<="" td=""><td>3</td><td><0.05</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.2</td></t>	3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
BH6 BH7	0-0.1 m 0.4-0.5 m	FILL	19/01/2021 19/01/2021	5	<0.4 <0.4	8	4 46	19 38	NT	<0.1 <0.1	3	NT	19 24	<25 <25	<50 <50	<0.2 <0.2	<0.5	<1 <1	2	<1	3	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.1	<0.2 0.2
BH7 - [TRIPLICATE]	0.4 - 0.5 m	FILL	19/01/2021	5	<0.4	14	20	42	NT	<0.1	4	NT	26	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NŤ	NT	NT
BH7	1.4 - 1.5 m	FILL	19/01/2021	6	<0.4	13	19	39	1	<0.1	7		82	<25	<50	<0.2	<0.5	<1	<2	<1	3	0.1	<0.1	<0.1	<0.1	0.1	0.2
BH7 BH8	2.4 - 2.5 m 0 - 0.1 m	FILL	19/01/2021 19/01/2021	6	<0.4	20	13	20	1 10	<0.1 <0.1	4	-	41	<25 <25	<50 <50	<0.2 <0.2	<0.5	<1	2	ব	3	<0.05	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.2 <0.2
BH8	0.4 - 0.5 m	FILL	19/01/2021	<4	<0.4	11	22	19	÷	≪0.1	7		41	<25	<50	<0.2	<0.5	<1	<2 <2	<	4	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2 <0.2
BH8	2 - 2.1 m	FILL	19/01/2021	10	<0.4	8	29	15		<0.1	8	1.1	47	<25	<50	<0.2	<0.5	<1	2	<1	3	<0.05	<0.1	<0.1	<0.1	<0,1	<0.2
BH8	3.5 - 3.6 m	SANDY CLAY	19/01/2021	<4	<0.4	77	7	27	NT	<0.1	2	NT	12	<25	<50	<0.2	<0.5	<1	<2	<1	3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
BD10/20210119*	3.5 - 3.6 m	SANDY CLAY	19/01/2021	6	<0.4	8	10	20	NT	≪0.1	2	NT	10	<25	<50	≪0.2	<0.5	<1	<2	<1	3	<0.05	<0.1	<0.1	≪0.1	<0.1	<0.2
BH9	0 - 0.1 m	FILL	19/01/2021	7	<0.4	15	38	110	<0.03	0.4	12	÷	220	<25	<50	⊲0.2	<0.5	<1	<2	<1	<3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
BH10 BH11	0 - 0.1 m 0 - 0.1 m	FILL	19/01/2021 18/01/2021	5	<0.4 <0.4	12 68	19 20	25 7		<0.1 <0.1	13	<0.02	39 32	<25 <25	<50 120	<0.2 <0.2	<0.5 <0.5	<1	2 2	ং 1 বা	3	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2
BH11	0.4 - 0.5 m	FILL	18/01/2021	8	⊲0.4	23	11	23	NT	0.3	4	NT	14	<25	<50	⊲0.2	<0.5	<1	2	<1	3	<0.05	<0.1	<0.1	⊲0.1	<0.1	<0.2
BD2/20210118*	0.4 - 0.5 m	FILL	18/01/2021	9	⊲0.4	23	12	22	NT	<0.1	5	NT	14	<25	<50	⊲0,2	<0.5	<1	4	ধ	3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
8H11	0.9 - 1 m	FILL (possible natural)	18/01/2021	8	<0.4	16	11	20	-	<0.1	1	14	6	<25	<50	⊲0.2	<0.5	<1	~	<1	-3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2
BH12	0.4 - 0.5 m	FILL	19/01/2021	7	⊲0.4	13	14	22	i ic	⊲0.1	4	-	16	<25	<50	⊲0.2	<0.5	<1	<2	<1	<3	0.1	<0.1	<0.1	⊲0.1	0.1	≪0.2
BH13	0-0.1 m	FILL	19/01/2021	~4	⊲0.4	6	8	15	3	<0,1	3	-	26	<25	<50	<0.2	<0.5	<1	~2	<1	3	<0.05	<0.1	<0.1	<0.1	<0.1	⊲0.2
BH13 BH14	0.9 - 1 m 0.4 - 0.5 m	FILL CLAY	19/01/2021 18/01/2021	<4 10	<0.4	12	16	15	-	<0.1 <0.1	7		17	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	2 2	<1 <1	3	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.2 <0.2
BH14 BH15	0.4-0.5 m 0-0.1 m	FILL	18/01/2021	10	<0.4	19 8	11	17 28		<0.1	4	mé (33	<25	<50	<0.2	<0.5	<1	~2	<1	3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.2 ≼0.2
BH16	0 - 0.1 m	FILL	19/01/2021	15	⊲0.4	- 11	15	26		⊲0.1	5		29	<25	<50	⊲0.2	<0.5	<1	2	<1	4	<0.05	<0.1	<0.1	⊲0.1	<0.1	⊲0.2
BH17	0.4 - 0.5 m	FILL	19/01/2021	10	<0.4	21	18	38	1 6	0,1	8		41	<25	<50	<0.2	<0,5	<1	2	<	3	0.07	<0.1	<0.1	<0.1	<0.1	⊲0.2
BH18 BH19	0-0.1 m	FILL	19/01/2021 18/01/2021	25	<0.4 <0.4	11 20	42	29 42	-	<0.1 <0.1	5		40	<25 <25	<50	<0.2 <0.2	<0.5	ব ব	2	<1	3	<0.05	<0.1	<0.1	<0.1 <0.1	<0.1	<0.2
BH19 BH20	0.4-0.5 m 0-0.1 m	FILL	18/01/2021	7	<0.4	17	12	42	1.4	<0.1	7	1 1 1	35	<25	<50	<0.2	<0.5	<1	<2 <2	<1	3	0.06	<0.1	<0.1	<0.1	<0.1	<0.2
BH21	0 - 0.1 m	FILL	19/01/2021	6	⊲0.4	14	25	25	τ)	<0.1	7		44	<25	<50	⊲0.2	<0.5	<1	<2	<1	<3	<0.05	<0.1	<0.1	<0.1	<0.1	≪0.2
BD6/20211019*	0-0.1 m	FILL	19/01/2021	6	≪0.3 ≪0.4	13	18	32	9	<0.05	7.5		53	<25	<50	<0.1	<0.1	<0.1	≪0.2 ≪2	<0.1	<0.3	<0.1 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 ⊲0.1	<0.1 <0.1	⊲0,1
BH22	0.4 - 0.5 m	FILL	18/01/2021	6						<0.1	2		16	<25	<50	<0.2	<0,5	<1		<1	3						<0.2

📱 CT1 exceedance 💿 TCLP1 and/or SCC1 exceedance 🔸 CT2 exceedance 🧧 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- D. Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen f.
- All criteria are in the same units as the reported results .
- Blind replicate samples are reported beneath the primary parent sample PQL Practical quantitation limit
- CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste CT2
- NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Table H3: Summary of Laboratory Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB and Asbestos

					P	AH								Phenol	0	CP	OPP	PCB		Asbestos	
				Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	ndeno(1,2,3-6,d)pyrene	Naphthalene	Phenanthrane	Pyrane	Total PAHs	Phenoi	Total Endosultan	Total Analysed OCP	Total Analysed OPP	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Total Aspestos
			PQL	0.1	0.1	0.1	0.1	0.1	0,1	1	0.1	0.1	0.05	5	0,1	0.1	0.1	0.1			
Sample ID	Depth	Soil Matrix	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		-	÷
Vaste Classificatio	on Criteria			_									1								<u></u>
	CT	1		NC	NC	NC	NC	NC	NC	NC	NC	NC	200	288	60	<50	4	<50	NC	NC	NC
	SCC		1	NC	NC	NC	NC	NC	NC	NC	NC	NC	200	518	108	<50	7.5	<50	NC	NC	NC
	CT			NC NC	NC	NC NC	NC.	NC	NC NC	NC NC	NC	NC NC	N/A 800	N/A 1152	N/A 240	N/A <50	N/A 16	N/A <50	NC.	NC	NC NC
	SCC		-	NC	NC	NC	NC.	NC	NC	NC	NC	NC	800	2073	432	<50	30	<50	NC.	NC	NC
	TCL	P2		NC	NC	NC	NC	NC	NC	NC	NC	NC	N/A	N/A	N/A	N/A.	N/A	N/A	NC	NC	NC
ublished Backgro						-		-		_											
	ANZECC	AV-SACE		-	-	3		Ŧ	1	-	-	÷	0.95-5	0.03 - 0.5	<0.001 - <0.97	-	-	0.02 - 0.1	NIL	NIL	NIL
aboratory Result		(2000)		e	÷					-	-	÷	-			÷	-		-		
BH1	0-0.1 m	FILL	18/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0,1	<0.1	4	<0.1	≪0.1	<0.05	\$	<0.1	⊲0.1	<0.1	≪0.1	NAD	NAD	NAD
BH1	0.4 - 0.5 m	CLAY	18/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	≪0.1	<1	<0.1	<0.1	<0.05			-	1				
BH2	0.4 - 0.5 m	FILL	19/01/2021	<0.1	<0,1	<0.1	⊲0.1	<0,1	<0.1	<1	<0.1	<0.1	<0.05	\$	<0.1	⊲0.1	<0.1	≪0.1	NAD	NAD	NAD
BH2 BH3	1.4 - 1.5 m 0 - 0.1 m	CLAY FILL	19/01/2021 18/01/2021	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<1 <1	<0.1 0.1	<0.1 0.1	<0.05		<0.1	- ⊲0.1	<0.1	- <0.1	- NAD	NAD	NAD
BH4	0.4-0.5 m	FILL	18/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1 <1	<0.1	<0.1	<0.05	\$	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BD1/20210118*	0.4 - 0.5 m	FILL	18/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1			
BH5	1 - 1,1 m	FILL	18/01/2021	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<1	<0.1	0.1	0.3	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH5	2 - 2.1 m	FILL	18/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	-					NAD	NAD	NAD
BH5 BH6	2.9-3 m 0-0.1 m	CLAY FILL	18/01/2021 19/01/2021	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<1 <1	<0.1 <0.1	<0.1 <0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH6 BH7	0-0.1 m 0.4 - 0.5 m	FILL	19/01/2021	<0.1	<0.1 0.1	<0.1	Q.1 0.2	<0.1	<0.1 <0.1	<1	<0.1	0.2	<0.05	45	<0.1 <0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
H7 - [TRIPLICATE]	0.4 - 0.5 m	FILL	19/01/2021	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT			
BH7	1.4 - 1.5 m	FILL	19/01/2021	<0.1	0.1	<0.1	0.2	<0.1	⊲0.1	<1	0.1	0.2	1.2			÷	1.4	4	NAD	NAD	NAD
BH7	2.4 - 2.5 m	FILL	19/01/2021	<0.1	<0.1	<0.1	⊲0.1	≪0.1	<0.1	<1	<0.1	<0.1	<0.05	1.5		1		-	е.		
BH8	0-0.1 m	FILL	19/01/2021	<0.1	<0.1	<0.1	0.1	<0.1	≪0.1	<1	<0.1	0.1	0.3	<5	<0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH8 BH8	0.4 - 0.5 m 2 - 2.1 m	FILL	19/01/2021 19/01/2021	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<1 <1	<0.1 <0.1	<0.1 <0.1	<0.05	1. 20					NAD	NAD	NAD
BH8	3.5 - 3.6 m	SANDY CLAY	19/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	NT	NT	NT	NT	NT	-	-	-
BD10/20210119*	3.5 - 3.6 m	SANDY CLAY	19/01/2021	<0.1	<0.1	<0.1	0.1	<0.1	⊲0.1	<1	0.1	<0.1	0.2	NT	NT	NT	NT	NT			-
BH9	0-0.1m	FILL	19/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH10	0 - 0.1 m	FILL	19/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	≼0.1	<1	<0,1	<0.1	<0.05	<5	<0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH11	0 - 0.1 m	FILL	18/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	0.1	<0.1	0.1	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH11	0.4 - 0.5 m	FILL	18/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	NT	NT	NT	NT	NT	NAD	NAD	NAD
BD2/20210118* BH11	0.4 - 0.5 m 0.9 - 1 m	FILL FILL (possible natural)	18/01/2021 18/01/2021	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<1	<0.1	<0.1 <0.1	<0.05 <0.05	NT -	NT -	NT -	NT -	NT	NAD	NAD	NAD
BH12	0.4 - 0.5 m	FILL	19/01/2021	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<1	0.1	0.2	0.76	<5	<0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH13	0-0.1 m	FILL	19/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	<5	≪0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH13	0.9-1 m	FILL	19/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	4	<0.1	<0.1	<0.05	<5	<0.1	-	-	-	-	-	NAD
BH14 BH15	0.4 - 0.5 m 0 - 0.1 m	CLAY FILL	18/01/2021 18/01/2021	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<1	<0.1 <0.1	<0.1	<0.05	<5 <5	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	NAD	NAD	NAD NAD
BH16	0-0.1m	FILL	19/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	45	<0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH17	0.4 - 0.5 m	FILL	19/01/2021	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	<1	<0.1	<0.1	0.2	<5	<0.1	⊲0.1	<0.1	<0.1	NAD	NAD	NAD
BH18	0 - 0.1 m	FILL	19/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05				-	-	NAD	NAD	NAD
BH19	0.4 - 0.5 m	FILL	18/01/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH20 BH21	0-0.1 m 0-0.1 m	FILL	18/01/2021 19/01/2021	<0.1 <0.1	<0.1	<0.1	0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<1 <1	<0.1	0.1 <0.1	0.3 <0.05	<5 <5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NAD	NAD	NAD
BD6/20211019*	0-0.1m	FILL	19/01/2021	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	<0.1	<0.1	0.1	<0.8	5	<0.1	<0.1	<0.1	NT	-		100
BH22	0.4 - 0.5 m	FILL	18/01/2021	<0.1	<0.1	<0.1	⊲0.1	<0.1	⊲0.1	<1	<0.1	<0.1	<0.05	1		-			NAD	NAD	NAD
BH23	0.4 - 0.5 m	FILL	19/01/2021	0.2	0,4	<0.1	1.2	<0.1	0,2	<1	4	4	6	~	~	-		-	NAD	NAD	NAD

Notes:

a QA/QC replicate of sample listed directly below the primary sample

Total chromium used as initial screen for chromium(VI).

C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

d Criteria for scheduled chemicals used as an initial screen

e Criteria for Chlorpyrifos used as initial screen

All criteria are in the same units as the reported results
 Blind replicate samples are reported beneath the primary part

* Blind replicate samples are reported beneath the primary parent sample

PQL Practical quantitation limit

CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General social waste

CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste

SCC2. NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

99872.01.R.002.Rev0 February 2021

D21/7	8776	1
	Count	Nickel
1	1	4
2	2	2
3	3	7
4	4	2
5	5	57
6	6	5
7	7	6
8	8	7
9	9	4
10	10	3
11	11	3
12	12	5
13	13	4
14	14	7
15	15	4
16	16	7
17	17	11
18	18	8
19	19	2
20	20	2
21	21	12
22	22	13
23	23	54
24	24	4
25	25	5
26	26	1
27	27	4
28	28	3
29	29	7
30	30	2
31	31	4
32	32	5
33	33	8
34	34	5
35	35	5
36	36	7
37	37	7
38	38	7.5
39	39	2
40	40	3

D2 ⁻	/784776 в с	D E	F	G H I J K	L
1		UCL Statisti	es for Uncen	sored Full Data Sets	
2	User Selected Options	1			
3	Date/Time of Computation	ProUCL 5.19/2/2021 11:	18.53 AM		_
4	From File	WorkSheet.xls	10.35 AW		
5	Full Precision	OFF			_
6	Confidence Coefficient	95%			
7	Number of Bootstrap Operations	2000			
8	Number of Bootstrap Operations	2000			
9					_
10	Nickel				
11 12					
12			General Sta	atistics	
13	Total	Number of Observations	40	Number of Distinct Observations	14
14 15				Number of Missing Observations	0
		Minimum	1	Mean	7.713
16		Maximum	57	Median	5
17		SD	11.44	Std. Error of Mean	1.809
18		Coefficient of Variation	1.484	Skewness	3.907
19		- semention of Variation	1.101	0.0001033	5.507
20			Normal GO	F Test	
21	Sh	apiro Wilk Test Statistic	0.446	Shapiro Wilk GOF Test	
22		apiro Wilk Critical Value	0.94	Data Not Normal at 5% Significance Level	
23	070 011	Lilliefors Test Statistic	0.365	Lilliefors GOF Test	
24	50	6 Lilliefors Critical Value	0.139	Data Not Normal at 5% Significance Level	
25				Significance Level	
26		Data Nort	vormar at 070		
27		Δςςι	uming Norma	Distribution	_
28	95% N	ormal UCL	unning Norma	95% UCLs (Adjusted for Skewness)	
29	3570 11	95% Student's-t UCL	10.76	95% Adjusted-CLT UCL (Chen-1995)	11.88
30		30 % Oldent 3-t OOL	10.70	95% Modified-t UCL (Johnson-1978)	10.95
31					10.00
32			Gamma GC	IF Test	
33		A-D Test Statistic	2.938	Anderson-Darling Gamma GOF Test	_
34		5% A-D Critical Value	0.77	Data Not Gamma Distributed at 5% Significance Lev	vol
35		K-S Test Statistic	0.244	Kolmogorov-Smirnov Gamma GOF Test	
36		5% K-S Critical Value	0.143	Data Not Gamma Distributed at 5% Significance Lev	vel
37				at 5% Significance Level	
38 39		Sala not Guillin			
-			Gamma Sta	atistics	_
40 41		k hat (MLE)	1.337	k star (bias corrected MLE)	1.254
-		Theta hat (MLE)	5.767	Theta star (bias corrected MLE)	6.152
42		nu hat (MLE)	107	nu star (bias corrected MLL)	100.3
43 44	M	E Mean (bias corrected)	7.713	MLE Sd (bias corrected)	6.888
-				Approximate Chi Square Value (0.05)	78.19
45	Adjust	ed Level of Significance	0.044	Adjusted Chi Square Value	77.46
46	Adjust	es cores of orginicanoe	0.011		
47		Δοοι	iming Gamma	Distribution	
48	95% Approximate Gamma		9.893	95% Adjusted Gamma UCL (use when n<50)	9.986
49			0.000		0.000
50		1	Lognormal G	OF Test	
51	Ch	apiro Wilk Test Statistic	0.903	Shapiro Wilk Lognormal GOF Test	
52		apiro Wilk Critical Value	0.905	Data Not Lognormal at 5% Significance Level	_
53	570 311	apiro mini onnical value	0.04	Data Not Edghormal at 070 Digniticance Level	-

)21/	78776	В	С	D		E	F	G	Н	1	J	К	L
54				Lilliefc	ors Test St	tatistic	0.157		Lil	liefors Logr	normal GOF	Test	
55			Ę	5% Lilliefo	ors Critical	Value	0.139		Data Not	Lognormal	at 5% Signific	cance Level	
56					Data	Not Log	gnormal at §	5% Signific	cance Leve				
57													
58							Lognormal	Statistics					
59				Minimum	of Logge	d Data	0				Mean of	logged Data	1.625
60				Maximum	of Logge	d Data	4.043				SD of	logged Data	0.79
61													
52						Assum	ning Lognor	mal Distrib	oution				
63					95% H	H-UCL	9.136			90%	Chebyshev (MVUE) UCL	9.722
64			95%	Chebysh	ev (MVUE) UCL	11.02			97.5%	Chebyshev (MVUE) UCL	12.81
65			99%	Chebyshe	ev (MVUE) UCL	16.34						
66													
67					Nonp	arametri	ic Distributi	on Free U	CL Statistic	cs			
68					Data do	o not foll	ow a Disce	rnible Dist	ribution (0.	05)			
69													
70					N	lonpara	metric Distr	bution Fre	e UCLs				
71					95% CL	TUCL	10.69				95% Ja	ckknife UCL	10.76
72			95%	Standard	d Bootstra	p UCL	10.57				95% Boo	tstrap-t UCL	18.19
73			3	95% Hall's	s Bootstra	p UCL	26.98			95% F	Percentile Bo	otstrap UCL	10.8
74				95% BCA	A Bootstra	p UCL	12.41						
75			90% C	hebyshev	(Mean, Sc	I) UCL	13.14			95% Ch	ebyshev(Me	an, Sd) UCL	15.6
76			97.5% C	hebyshev	(Mean, So	I) UCL	19.01			99% Ch	ebyshev(Me	an, Sd) UCL	25.71
77													
78						S	uggested U	CL to Use	6				
79			95% Ch	ebyshev ((Mean, So	I) UCL	15.6						
30													
31	Note: S	uggestio	ons regardi	ng the sel	lection of a	a 95% U	ICL are prov	vided to he	Ip the user	to select th	ne most appr	opriate 95% L	JCL.
32			F	lecommer	ndations a	re based	d upon data	size, data	distribution	, and skew	ness.		
33	These	recomm	nendations	are based	d upon the	e results	of the simu	lation stud	ies summa	rized in Sin	igh, Maichle,	and Lee (200	06).
34	However,	simulati	ons results	will not c	cover all R	Real Wor	ld data sets	; for addition	onal insigh	t the user m	ay want to c	onsult a statis	stician.
35													

D21/78776

Appendix I

Quality Analysis and Quality Controls

Appendix I Quality Analysis and Quality Controls Marsden High School, Ryde

I1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other filed QC samples are included at the end of this appendix.

Item	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD	C*
Inter-laboratory replicates	5% of primary samples; <30% RPD	PC*
Trip Spikes	1 per sampling event; 60-140% recovery	PC**
Trip Blanks	1 per sampling event; <pql< td=""><td>PC**</td></pql<>	PC**
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	C

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

* Inter-laboratory replicates were 3% of primary samples. However, there was 13% laboratory replicates in total. See comments below.

** See comments below

Page 2 of 4

The RPD results were all within the acceptable range, with the exception of those indicated in Table QA1. The exceedances are not, however, considered to be of concern given that:

- The number of replicate pairs being collected from fill soils which by its nature is heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

One trip spike and one trip blank were taken into the field and submitted with the samples to the laboratory. As the trip blank concentrations were all <PQL and the trip spike recovery was within the acceptance criteria of 60 - 140% recovery (see Table QA2 and QA3 respectively), a partial compliance was observed. However, given the results it was considered that appropriate sample storage, handling and transportation was achieved and this partial compliance is unlikely to affect data quality.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

12.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Table 2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

13.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

I4.0 References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Table QA1: Relative Percentage Difference Results - Intra-laboratory and Inter-laboratory Replicates

			-				Me	etals			_	-		Ť	RH		_		B	TEX			PAH		Phenol	1					OCP			-
				Arsenic	Cadmium	Total Chromiam	Copper	Lead	Mercury (inorganic)	Nckel	Zine	TRH C6- C10	TRN-CI0-C16	1 ((C6-C10)-BTEX)	F2 (>CID-C16 less Naphthalisme)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Eflylbenzene	Total Xylenes	Nachtratene b	Banzo(a)pyrene (BaP)	Banzo(a)pyrane TEQ	Phenoi	DOT+DDE+DOD ⁶	ODD	DDE	100	Adm & Dielan	Total Chlordane	Total Endosultan	Endim	Heptachlor
aboratory	Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
ELS	BD1/20210118	04-05m	18/01/2021	6	<0.4	15	14	14	<0.1	6	n	<25	<50	<25	<50	<100	240	⊲0.2	<0.5	র	<1	<1	<0.05	<0.5	<5	<0,1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
ELS	BH4	0.4-0.6 m	and the second second	7	<0.4	14	14	16	<0.1	5	10	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
			Difference	1.1	0	1	0	2	0	1	1	0	D	0	0	0	140	Ø	D	0	Ó	D	0	D	D	0	0	0	0	0	0	D	0	-
			RPD	15%	0%	7%	0%	13%	0%	18%	10%	0%	0%	0%	0%	0%	82%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0
ELS	BD10/2021011	3.5 - 3.6 m	19/01/2021	6	<0.4	8	10	20	<0.1	2	10	<25	<50	<25	<50	<100	<100	⊲0.2	<0.5	<1	<1	<1	<0.05	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.113
ELS	BH8	3.5 - 3.6 m	19/01/2021	<4	<0.4	7	7	27	<0.1	2	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	1
			Difference	2	0	1	3	7	Ū.	0	2	0	D	0	0	ů.	a	0	D	0	Ó	0	0	D	1.4	1.00	-		141	-	-			10.0
		-	RPD	40%	0%	13%	35%	30%	0%	0%	18%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	×	t.		2	2					12
ELS	BD2/20210118	0.4-0.5 m	18/01/2021	9	<0.4	23	12	22	<0.1	5	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	ব	<1	<0.05	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
ELS	BH11	0.4 - 0.6 m		8	<0.4	23	11	23	0.3	4	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	1
			Difference	-1	0	0	1	1	0.2	1	0	D	D	0	0	Ū.	a	Ó	D	0	Ó	D	0	D	1.41	-	-	3	- 14	4		-		
	1	1.7	RPD	12%	0%	0%	9%	4%	100%	22%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	- 5÷ -	2.	1		4.0	0.0	-			1.5
																													-					
ELS	BD6/20210119	0-0.1 m	19/01/2021	6	<0.3	13	18	32	<0.05	7.5	53	<25	<50	<25	<50	<90	<120	<0.1	<0.1	<0.1	⊲0.3	<0.1	<0.1	<0.2	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	
SGS	BH21	0-0.1 m	19/01/2021	6	<0.4	.14	25	25	<0.1	7	-44	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT	1.0
			Difference	0	0	1	7	7	0	0.5	8	D	0	0	0	10	a	0	0	0	Ó	D	0	D	0	1.0		1.1		-		-	1.000	1
	1		RPD	0%	0%	7%	32%	24%	0%	7%	18%	0%	0%	0%	0%	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	- F		÷	104.0	-	-	-	+	

-	_	OPP	PCB		Asbestos			-		-	-	Complete	PAH suite	_		-	-		T	RH	1			_	Complete	OCP suite	_		-			Complete	OPP suite	-
Hex achiorobenz ene	Wethoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soli >0.19kg	Trace Analysis	Asbestos (50 g)	Acomphtione	Acenaphthylena	Anthracene	Benz o(a)anthracene	Benzo(g,h.))penylene	Chrysene	Dibenzo(a, h) embrac ene	Fluoranthene	Fluorene	Indeno(12,3- c,d)pyrene	Phenanthrena	Pyrana	TRH C6 - C9	C10-C36 recoverable hydrocarbons	apha-BHC	beta-BHC	Bromophos-ethyl	Chlorpyriphos- metryl	delta-BHC	Dezinon	Dimethoate	Endin Adehyde	Undane	Heptachior Epoxide	Azinphos methyl (Guthlan)	Ethion	Feniroman	Ronnei
g/kg	mg/kg	mg/kg	mg/kg	-	1.10	8 -	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg
.1	<0.1	<0.1	<0.1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<25	<50	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Τ.
1.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
1	0	0	0		1.4	8	0	0	8	0	D	0	C	0	Ø	D	0	0	0	a	D	D	0	0	0	0	a	0	0	0	Ð	0	8	
%	0%	0%	0%		4.		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
T I	NT	NT	NT	NT	NT	NT	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	\$25	<50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	T
5.1	NT	NT	NT	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
		-	~	1.0	-		0	0	8	0	0	0	0	0	8	D	0	0	0	0		-		1.0	-			(e).	1.160			- 14	-	
-	:	1	1	1	t	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	2	1 t	12.0		2	2	1	1.1.2	+ : +				+
VT	NT	NT	NT	NT	NT	NT	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	T
T	NT	NT	NT	NAD	NAD	NAD	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	+
	1.00	1.00	~	- 12	-	8.	0	0	0	0	0	0	0	0	Ø	D	0	0	D	0	a .	-	~	4		- 2	141	- Gel		1.18	- 2	- 14	-	1
	-	÷ .	+	1. C. C.		5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1. 12 - 1	6		10401	-	4	÷	- A.	1.1.2.	1	in print			T
π	NT	NT	NT	NT	NT	NT	<0.1	<0.1	<0.1	<0:1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<25	<50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
ŧ.	NT	NT	NT	NAD	NAD	NAD	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<25	<50	NT	NT	NŤ	NT	NT	NT	NT.	NT	NT	NT	NT	NT	NT	
		-		(2)	1.1		0	0	0	Ø	0	0	0	0	D	0	Q	0	0	0	1.8			1.1	3	1.040		-	-	1.8	-	1		
		2			÷	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% -	0%	1.2	÷.		104 million		1.0.4.1.1	1.141		÷			100-00		

Table QA2: Trip Blank Results - Soils (mg/kg)

Sample ID	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene
Trip Blank	<0.2	<0.5	<1	<2	<1

Table QA3: Trip Spike Results - Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene
Trip Spike	99	98	98	99	98

Appendix J

Laboratory Certificates of Analysis

Chain of Custody Documentation

Sample Receipt Advice

D21/78776

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 260039

Douglas Partners Pty Ltd	
Lisa Teng	
96 Hermitage Rd, West Ryde, NSW, 2114	
	Lisa Teng

Sample Details		
Your Reference	99872.01, Marsden High School West Ryde	
Number of Samples	45 soil	
Date samples received	21/01/2021	
Date completed instructions received	21/01/2021	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 29/01/2021

 Date of Issue
 29/01/2021

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Ken Nguyen, Reporting Supervisor Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil Our Reference		260039-1	260039-2	260039-3	260039-4	260039-5
Your Reference	UNITS		BH1	BH2	BH3	BH4
	UNITS	BH1				4.4.4.4
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	112	103	117	110

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		260039-7	260039-8	260039-9	260039-10	260039-11
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH7
Depth		1-1.1	2-2.1	2.9-3.	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	18/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	+	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	108	116	102	114	102

/TRH(C6-C10)/BTEXN in Soil		5				
Our Reference		260039-12	260039-13	260039-14	260039-15	260039-16
Your Reference	UNITS	BH7	BH7	BH8	BH8	BH8
Depth		1.4-1.5	2.4-2.5	0-0.1	0.4-0.5	2-2.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
/TPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
n+p-xylene	mg/kg	<2	<2	<2	<2	<2
p-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	108	115	98	112	111

Our Reference		260039-17	260039-18	260039-20	260039-21	260039-22
Your Reference	UNITS	BH8	BH9	BH10	BH11	BH11
Depth		3.5-3.6	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		19/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed		29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	110	111	114	108	105

Our Reference		260039-23	260039-24	260039-25	260039-26	260039-28
Your Reference	UNITS	BH11	BH12	BH13	BH13	BH14
Depth		0.9-1.0	0.4-0.5	0-0.1	0.9-1.0	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	100	103	106	108	107

Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed		29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	103	103	101	96	102

Our Reference		260039-36	260039-37	260039-38	260039-39	260039-40
Your Reference	UNITS	BH20	BH21	BH22	BH23	BD1/20210118
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	-
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	93	103	100	105

Our Reference		260039-41	260039-42	260039-43	260039-44	260039-45
Your Reference	UNITS	BD10/20210119	BD2/20210118	Trip Spike	Trip Blank	BH2
Depth		-	-	-	-	1.4-1.5
Date Sampled		19/01/2021	18/01/2021	18/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	+	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
TRH C6 - C9	mg/kg	<25	<25		<25	<25
TRH C6 - C10	mg/kg	<25	<25		<25	<25
VTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25		<25	<25
Benzene	mg/kg	<0.2	<0.2	99%	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	98%	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	98%	<1	<1
m+p-xylene	mg/kg	<2	<2	99%	<2	<2
o-Xylene	mg/kg	<1	<1	98%	<1	<1
naphthalene	mg/kg	<1	<1		<1	<1
Total +ve Xylenes	mg/kg	<3	<3		<3	<3
Surrogate aaa-Trifluorotoluene	%	108	108	101	115	108

Our Reference		260039-1	260039-2	260039-3	260039-4	260039-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH4
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed		27/01/2021	27/01/2021	27/01/2021	28/01/2021	27/01/2021
TRH C10 - C14	mg/kg	73	<50	<50	<50	<50
TRH C15 - C28	mg/kg	120	<100	<100	150	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	770	<100
TRH >C10 -C16	mg/kg	69	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	69	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	160	100	<100	870	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	2,100	<100
Total +ve TRH (>C10-C40)	mg/kg	230	100	<50	3,000	<50
Surrogate o-Terphenyl	%	90	102	97	113	101

svirkh (C10-C40) in Soil						
Our Reference		260039-7	260039-8	260039-9	260039-10	260039-11
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH7
Depth		1-1.1	2-2.1	2.9-3.	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	18/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	+	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	102	103	102	100	98

svTRH (C10-C40) in Soil	7					
Our Reference		260039-12	260039-13	260039-14	260039-15	260039-16
Your Reference	UNITS	BH7	BH7	BH8	BH8	BH8
Depth		1.4-1.5	2.4-2.5	0-0.1	0.4-0.5	2-2.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	1	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	27/01/2021	27/01/2021	28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	102	102	100	99	97

svTRH (C10-C40) in Soil		Land a Direct Com			200 000 0 0.T	
Our Reference		260039-17	260039-18	260039-20	260039-21	260039-22
Your Reference	UNITS	BH8	BH9	BH10	BH11	BH11
Depth		3.5-3.6	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		19/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	120	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	170	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	550	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	720	<50
Surrogate o-Terphenyl	%	97	100	98	101	94

svTRH (C10-C40) in Soil	-					
Our Reference		260039-23	260039-24	260039-25	260039-26	260039-28
Your Reference	UNITS	BH11	BH12	BH13	BH13	BH14
Depth		0.9-1.0	0.4-0.5	0-0.1	0.9-1.0	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	97	98	96	95

svTRH (C10-C40) in Soil						
Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	÷.	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	96	98	92	98	95

Our Reference		260039-36	260039-37	260039-38	260039-39	260039-40
Your Reference	UNITS	BH20	BH21	BH22	BH23	BD1/20210118
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	-
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	240
Total +ve TRH (>C10-C40)	mg/kg	<50	100	<50	<50	240
Surrogate o-Terphenyl	%	94	95	94	93	90

Our Reference		260039-41	260039-42	260039-45
Your Reference	UNITS	BD10/20210119	BD2/20210118	BH2
Depth		9	-	1.4-1.5
Date Sampled		19/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil
Date extracted	÷	27/01/2021	27/01/2021	27/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100
TRH C29 - C36	mg/kg	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	93	92	91

D21/78776

PAHs in Soil						
Our Reference		260039-1	260039-2	260039-3	260039-4	260039-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH4
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	÷	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.07	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	100	99	93	98

PAHs in Soil						<u> </u>
Our Reference		260039-7	260039-8	260039-9	260039-10	260039-11
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH7
Depth		1-1.1	2-2.1	2.9-3.	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	18/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	0.2
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.3	<0.05	<0.05	<0.05	0.93
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	96	104	99	98

PAHs in Soil	100	-				
Our Reference		260039-12	260039-13	260039-14	260039-15	260039-16
Your Reference	UNITS	BH7	BH7	BH8	BH8	BH8
Depth		1.4-1.5	2.4-2.5	0-0.1	0.4-0.5	2-2.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	0.06	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.2	<0.05	0.3	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	98	97	94	95

PAHs in Soil						
Our Reference		260039-17	260039-18	260039-20	260039-21	260039-22
Your Reference	UNITS	BH8	BH9	BH10	BH11	BH11
Depth		3.5-3.6	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		19/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.1	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	92	95	92	93	96

PAHs in Soil						
Our Reference		260039-23	260039-24	260039-25	260039-26	260039-28
Your Reference	UNITS	BH11	BH12	BH13	BH13	BH14
Depth		0.9-1.0	0.4-0.5	0-0.1	0.9-1.0	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	1	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.76	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	93	96	96	97	95

PAHs in Soil						
Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.07	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.2	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	95	96	97	96

PAHs in Soil						1
Our Reference		260039-36	260039-37	260039-38	260039-39	260039-40
Your Reference	UNITS	BH20	BH21	BH22	BH23	BD1/20210118
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	-
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	- V	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	4	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	1.2	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	1.0	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.5	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.6	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	0.4	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	0.3	<0.05	<0.05	6.0	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5
Surrogate p-Terphenyl-d14	%	95	97	96	96	94

PAHs in Soil				
Our Reference		260039-41	260039-42	260039-45
Your Reference	UNITS	BD10/20210119	BD2/20210118	BH2
Depth		4	+	1.4-1.5
Date Sampled		19/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.2	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	95	94

Our Reference		260039-1	260039-3	260039-4	260039-5	260039-7
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	1-1.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	÷.	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	100	107	107

Organochlorine Pesticides in soil				Lange and the		1 Dansas inte
Our Reference		260039-10	260039-11	260039-14	260039-18	260039-20
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.4-0.5	0-0.1	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	107	105	102	101

Organochlorine Pesticides in soil						
Our Reference		260039-21	260039-24	260039-25	260039-28	260039-29
Your Reference	UNITS	BH11	BH12	BH13	BH14	BH15
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		18/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	1 	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	105	104	104	102

Organochlorine Pesticides in soil	-					
Our Reference		260039-30	260039-32	260039-34	260039-36	260039-37
Your Reference	UNITS	BH16	BH17	BH19	BH20	BH21
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	18/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	- -	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	106	106	103	105

Organochlorine Pesticides in soil		200020 40
Our Reference	10000	260039-40
Your Reference	UNITS	BD1/20210118
Depth		-
Date Sampled		18/01/2021
Type of sample		soil
Date extracted		27/01/2021
Date analysed	-	28/01/2021
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	105

Our Reference		260039-1	260039-3	260039-4	260039-5	260039-7
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	1-1.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	÷.	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	100	107	107

Our Reference		260039-10	260039-11	260039-14	260039-18	260039-20
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.4-0.5	0-0.1	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	107	105	102	101

Organophosphorus Pesticides in So Our Reference		260039-21	260039-24	260039-25	260039-28	260039-29
	LINUTO					
Your Reference	UNITS	BH11	BH12	BH13	BH14	BH15
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		18/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	105	104	104	102

Organophosphorus Pesticides in So Our Reference		260039-30	260039-32	260039-34	260039-36	260039-37
	(in the					
Your Reference	UNITS	BH16	BH17	BH19	BH20	BH21
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	18/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	106	106	103	105

Our Reference		260039-40
Your Reference	UNITS	BD1/20210118
Depth		-
Date Sampled		18/01/2021
Type of sample		soil
Date extracted	· · · · ·	27/01/2021
Date analysed		28/01/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	105

PCBs in Soil						
Our Reference		260039-1	260039-3	260039-4	260039-5	260039-7
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	1-1.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	107	100	107	107

PCBs in Soil				· · · · · · · · · · · · · · · · · · ·	and the second secon	and the second s
Our Reference		260039-10	260039-11	260039-14	260039-18	260039-20
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.4-0.5	0-0.1	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	*	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	107	105	102	101

PCBs in Soil		1				1
Our Reference		260039-21	260039-24	260039-25	260039-28	260039-29
Your Reference	UNITS	BH11	BH12	BH13	BH14	BH15
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		18/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	105	104	104	102

PCBs in Soil						
Our Reference		260039-30	260039-32	260039-34	260039-36	260039-37
Your Reference	UNITS	BH16	BH17	BH19	BH20	BH21
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	18/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date extracted	÷.	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	106	106	103	105

Our Reference		260039-40
Your Reference	UNITS	BD1/20210118
Depth		81
Date Sampled		18/01/2021
Type of sample		soil
Date extracted		27/01/2021
Date analysed	-	28/01/2021
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	105

Our Reference		260039-1	260039-2	260039-3	260039-4	260039-5
Our Neierence		200033-1	200039-2	200035-3	200035-4	200039-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH4
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	- 1	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	6	8	4	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	12	12	69	14
Copper	mg/kg	11	8	12	49	14
Lead	mg/kg	66	12	16	5	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	2	7	57	5
Zinc	mg/kg	33	5	15	33	10

Acid Extractable metals in soil						
Our Reference		260039-7	260039-8	260039-9	260039-10	260039-11
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH7
Depth		1-1.1	2-2.1	2.9-3.	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	18/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	8	4	10	4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	16	21	8	12
Copper	mg/kg	12	8	11	4	46
Lead	mg/kg	22	17	19	19	38
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	4	3	3	5
Zinc	mg/kg	27	6	10	19	24

Acid Extractable metals in soil	P					
Our Reference		260039-12	260039-13	260039-14	260039-15	260039-16
Your Reference	UNITS	BH7	BH7	BH8	BH8	BH8
Depth		1.4-1.5	2.4-2.5	0-0.1	0.4-0.5	2-2.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1.00	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	•	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	6	6	<4	6	10
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	20	11	13	8
Copper	mg/kg	19	13	22	23	29
Lead	mg/kg	39	20	21	19	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	4	7	11	8
Zinc	mg/kg	82	11	41	49	47

Acid Extractable metals in soil		and the second second	And the second			1
Our Reference		260039-17	260039-18	260039-20	260039-21	260039-22
Your Reference	UNITS	BH8	BH9	BH10	BH11	BH11
Depth		3.5-3.6	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		19/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	141	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	<4	7	5	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	15	12	68	23
Copper	mg/kg	7	38	19	20	11
Lead	mg/kg	27	110	25	7	23
Mercury	mg/kg	<0.1	0.4	<0.1	<0.1	0.3
Nickel	mg/kg	2	12	13	54	4
Zinc	mg/kg	12	220	39	32	14

Acid Extractable metals in soil						
Our Reference		260039-23	260039-24	260039-25	260039-26	260039-28
Your Reference	UNITS	BH11	BH12	BH13	BH13	BH14
Depth		0.9-1.0	0.4-0.5	0-0.1	0.9-1.0	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	100	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	8	7	<4	<4	10
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	13	6	12	19
Copper	mg/kg	11	14	8	16	11
Lead	mg/kg	20	22	15	15	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	4	3	7	2
Zinc	mg/kg	6	16	26	17	7

Acid Extractable metals in soil						
Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	(Å)	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	12	15	10	25	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	11	21	11	20
Copper	mg/kg	10	15	18	42	12
Lead	mg/kg	28	26	38	29	42
Mercury	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	4	5	8	5	5
Zinc	mg/kg	33	29	41	40	22

Our Reference		260039-36	260039-37	260039-38	260039-39	260039-40
Your Reference	UNITS	BH20	BH21	BH22	BH23	BD1/20210118
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	-
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1.00	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	7	6	6	8	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	14	17	12	15
Copper	mg/kg	12	25	3	17	14
Lead	mg/kg	24	25	15	24	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	7	2	3	6
Zinc	mg/kg	35	44	16	20	11

Acid Extractable metals in soil					
Our Reference		260039-41	260039-42	260039-45	260039-46
Your Reference	UNITS	BD10/20210119	BD2/20210118	BH2	BH7 - [TRIPLICATE
Depth		-	-	1.4-1.5	0.4-0.5
Date Sampled		19/01/2021	18/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil
Date prepared		28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021
Arsenic	mg/kg	6	9	4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	23	10	14
Copper	mg/kg	10	12	9	20
Lead	mg/kg	20	22	14	42
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	5	2	4
Zinc	mg/kg	10	14	7	26

Misc Soil - Inorg				a sa a s	e de la composition d	
Our Reference		260039-1	260039-3	260039-4	260039-5	260039-7
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	1-1.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Nisc Soil - Inorg						
Dur Reference		260039-10	260039-11	260039-14	260039-18	260039-20
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.4-0.5	0-0.1	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Fotal Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		260039-21	260039-24	260039-25	260039-28	260039-29
Your Reference	UNITS	BH11	BH12	BH13	BH14	BH15
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		18/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	+	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Nisc Soil - Inorg				1		
Dur Reference		260039-30	260039-32	260039-34	260039-36	260039-37
Your Reference	UNITS	BH16	BH17	BH19	BH20	BH21
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	18/01/2021	18/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Our Reference		260039-40
Your Reference	UNITS	BD1/20210118
Depth		-
Date Sampled		18/01/2021
Type of sample		soil
Date prepared	-	27/01/2021
Date analysed	-	27/01/2021
Total Phenolics (as Phenol)	mg/kg	<5

Moisture				Version and the second		
Our Reference		260039-1	260039-2	260039-3	260039-4	260039-5
Your Reference	UNITS	BH1	BH1	BH2	BH3	BH4
Depth		0-0.1	0.4-0.5	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Moisture	%	12	17	22	4.2	22
Moisture						
Our Reference		260039-7	260039-8	260039-9	260039-10	260039-11
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH7
Depth		1-1.1	2-2.1	2.9-3.	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	18/01/2021	19/01/2021	19/01/202
Type of sample		soil	soil	soil	soil	soil
Date prepared	÷ .	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/202
Date analysed	+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/202
Moisture	%	20	22	19	4.5	12
Moisture						
Our Reference		260039-12	260039-13	260039-14	260039-15	260039-16
Your Reference	UNITS	BH7	BH7	BH8	BH8	BH8
Depth		1.4-1.5	2.4-2.5	0-0.1	0.4-0.5	2-2.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/202
Date analysed	+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Moisture	%	12	20	6.1	14	13
Moisture		1				
Our Reference		260039-17	260039-18	260039-20	260039-21	260039-22
Your Reference	UNITS	BH8	BH9	BH10	BH11	BH11
Depth		3.5-3.6	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		19/01/2021	19/01/2021	19/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/202
Moisture	%	13	11	12	9.8	25

Client Reference: 99872.01, Marsden High School West Ryde

Moisture						
Our Reference		260039-23	260039-24	260039-25	260039-26	260039-28
Your Reference	UNITS	BH11	BH12	BH13	BH13	BH14
Depth		0.9-1.0	0.4-0.5	0-0.1	0.9-1.0	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1.1.1	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Moisture	%	29	12	4.7	18	21
Moisture						
Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared		27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Moisture	%	5.7	13	17	24	17
Moisture						
Our Reference		260039-36	260039-37	260039-38	260039-39	260039-40
Your Reference	UNITS	BH20	BH21	BH22	BH23	BD1/2021011
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	-
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	1.46	27/01/2021	27/01/2021	27/01/2021	27/01/2021	27/01/2021
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Moisture	%	16	14	8.1	8.4	21
Moisture						
Our Reference		260039-41	260039-42	260039-45		
Your Reference	UNITS	BD10/20210119	BD2/20210118	BH2		
Depth		-	-	1.4-1.5		
Date Sampled		19/01/2021	18/01/2021	19/01/2021		

soil

27/01/2021

28/01/2021

13

-

-

%

soil

27/01/2021

28/01/2021

25

soil

27/01/2021

28/01/2021

16

Type of sample

Date prepared

Date analysed

Moisture

Asbestos ID - soils						
Our Reference		260039-1	260039-3	260039-4	260039-5	260039-7
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	1-1.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021	18/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-+	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Sample mass tested	g	Approx. 35g	Approx. 30g	Approx. 35g	Approx. 30g	Approx. 30g
Sample Description		Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	+	No asbestos detected				
Asbestos ID - soils						
Our Reference		260039-8	260039-10	260039-11	260039-12	260039-14
Your Reference	UNITS	BH5	BH6	BH7	BH7	BH8
Depth		2-2.1	0-0.1	0.4-0.5	1.4-1.5	0-0.1
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Sample mass tested	9	Approx. 35g				
Sample Description		Brown coarse- grained soil & rocks	Brown coarse grained soil & rocks			
Asbestos ID in soil		No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit o 0.1g/kg			
		Organic fibres detected				
Trace Analysis		No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils						
Our Reference		260039-15	260039-16	260039-18	260039-20	260039-21
Your Reference	UNITS	BH8	BH8	BH9	BH10	BH11
Depth		0.4-0.5	2-2.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Sample mass tested	g	Approx. 35g				
Sample Description	÷	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil		No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		260039-22	260039-23	260039-24	260039-25	260039-28
Your Reference	UNITS	BH11	BH11	BH12	BH13	BH14
Depth		0.4-0.5	0.9-1.0	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	18/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed	÷	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Sample mass tested	g	Approx. 25g	Approx. 30g	Approx. 40g	Approx. 40g	Approx. 30g
Sample Description		Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Red coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil		No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	÷.,	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils						
Our Reference		260039-29	260039-30	260039-32	260039-33	260039-34
Your Reference	UNITS	BH15	BH16	BH17	BH18	BH19
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0.4-0.5
Date Sampled		18/01/2021	19/01/2021	19/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil	soil	soil
Date analysed		28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Sample mass tested	g	Approx. 40g	Approx. 35g	Approx. 30g	Approx. 30g	Approx. 30g
Sample Description	÷	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	*	No asbestos detected				
Asbestos ID - soils					-	
Our Reference		260039-36	260039-37	260039-38	260039-39	
Your Reference	UNITS	BH20	BH21	BH22	BH23	
Depth		0-0.1	0-0.1	0.4-0.5	0.4-0.5	
Date Sampled		18/01/2021	19/01/2021	18/01/2021	19/01/2021	
Type of sample		soil	soil	soil	soil	
Date analysed	-÷-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 40g	
Sample Description		Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	
Asbestos ID in soil	+	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	
Trace Analysis		No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	

Misc Inorg - Soil						
Our Reference		260039-2	260039-9	260039-13	260039-17	260039-26
Your Reference	UNITS	BH1	BH5	BH7	BH8	BH13
Depth		0.4-0.5	2.9-3.	2.4-2.5	3.5-3.6	0.9-1.0
Date Sampled		18/01/2021	18/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
Date analysed	· ·	28/01/2021	28/01/2021	28/01/2021	28/01/2021	28/01/2021
pH 1:5 soil:water	pH Units	5.1	4.9	5.4	5.8	4.9

CEC						
Our Reference		260039-2	260039-9	260039-13	260039-17	260039-26
Your Reference	UNITS	BH1	BH5	BH7	BH8	BH13
Depth		0.4-0.5	2.9-3.	2.4-2.5	3.5-3.6	0.9-1.0
Date Sampled		18/01/2021	18/01/2021	19/01/2021	19/01/2021	19/01/2021
Type of sample		soil	soil	soil	soil	soil
Date prepared	+	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Date analysed	-	29/01/2021	29/01/2021	29/01/2021	29/01/2021	29/01/2021
Exchangeable Ca	meq/100g	1.6	0.4	5.7	0.3	0.2
Exchangeable K	meq/100g	0.4	0.2	0.5	0.1	0.2
Exchangeable Mg	meq/100g	1.5	1.8	4.5	2.8	3.1
Exchangeable Na	meq/100g	0.29	1.8	0.22	0.88	0.59
Cation Exchange Capacity	meq/100g	3.8	4.3	11	4.1	4.1

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<="" is="" most="" pql.="" td="" the="" this=""></pql>
	approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above.</pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	ITROL: vTRH	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil							Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3		
Date extracted				28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021		
Date analysed	+			29/01/2021	1	29/01/2021	29/01/2021		29/01/2021	29/01/2021		
TRH C6 - C9	mg/kg	25	Org-023	<25	1	<25	<25	0	127	117		
TRH C6 - C10	mg/kg	25	Org-023	<25	1	<25	<25	0	127	117		
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	122	114		
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	130	114		
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	130	127		
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	125	114		
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	129	117		
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0		1.0		
Surrogate aaa-Trifluorotoluene	%		Org-023	132	1	115	113	2	121	103		

QUALITY CON	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21	
Date extracted	-			100	11	28/01/2021	28/01/2021		28/01/2021	28/01/2021	
Date analysed	-			-	11	29/01/2021	29/01/2021		29/01/2021	29/01/2021	
TRH C6 - C9	mg/kg	25	Org-023	1.00	11	<25	<25	0	125	105	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	-	11	<25	<25	0	125	105	
Benzene	mg/kg	0.2	Org-023	100	11	<0.2	<0.2	0	123	102	
Toluene	mg/kg	0.5	Org-023		11	<0.5	<0.5	0	125	105	
Ethylbenzene	mg/kg	1	Org-023		11	<1	<1	0	130	114	
m+p-xylene	mg/kg	2	Org-023		11	<2	<2	0	123	102	
o-Xylene	mg/kg	1	Org-023	1.0	11	<1	<1	0	127	105	
naphthalene	mg/kg	1	Org-023		11	<1	<1	0			
Surrogate aaa-Trifluorotoluene	%		Org-023	-	11	102	106	4	114	92	

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	÷				20	28/01/2021	28/01/2021			15
Date analysed					20	29/01/2021	29/01/2021			
TRH C6 - C9	mg/kg	25	Org-023		20	<25	<25	0		-
TRH C ₆ - C ₁₀	mg/kg	25	Org-023		20	<25	<25	0		
Benzene	mg/kg	0.2	Org-023	1.00	20	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-023		20	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	1.00	20	<1	<1	0		100
m+p-xylene	mg/kg	2	Org-023		20	<2	<2	0		
o-Xylene	mg/kg	1	Org-023		20	<1	<1	0		100
naphthalene	mg/kg	1	Org-023		20	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023	-	20	114	98	15		-

QUALITY CON	TROL: vTRH	I(C6-C10)/E	3TEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			100	29	28/01/2021	28/01/2021			100
Date analysed	+				29	29/01/2021	29/01/2021			
TRH C ₆ - C ₉	mg/kg	25	Org-023	-	29	<25	<25	0		1.1
TRH C ₆ - C ₁₀	mg/kg	25	Org-023		29	<25	<25	0		-
Benzene	mg/kg	0.2	Org-023		29	<0.2	<0.2	0		1.10
Toluene	mg/kg	0.5	Org-023		29	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	79-1	29	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023		29	<2	<2	0		
o-Xylene	mg/kg	1	Org-023	1.151	29	<1	<1	0		1.00
naphthalene	mg/kg	1	Org-023		29	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023		29	103	114	10		100

QUALITY	Y CONTROL: sv	RH (C10-0	C40) in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date extracted	÷.			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
TRH C10 - C14	mg/kg	50	Org-020	<50	1	73	77	5	113	123
TRH C15 - C28	mg/kg	100	Org-020	<100	1	120	170	34	78	84
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	100	0	92	110
TRH >C10 -C16	mg/kg	50	Org-020	<50	1	69	75	8	113	123
TRH >C16 -C34	mg/kg	100	Org-020	<100	1	160	220	32	78	84
TRH >C34 -C40	mg/kg	100	Org-020	<100	1	<100	100	0	92	110
Surrogate o-Terphenyl	%		Org-020	90	1	90	106	16	89	98

QUALITY	CONTROL: sv	RH (C10-0	C40) in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date extracted	-			1.75	11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+				11	27/01/2021	27/01/2021		28/01/2021	28/01/2021
TRH C10 - C14	mg/kg	50	Org-020		11	<50	<50	0	125	125
TRH C15 - C28	mg/kg	100	Org-020		11	<100	<100	0	80	102
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020		11	<100	<100	0	92	#
TRH >C10 -C16	mg/kg	50	Org-020		11	<50	<50	0	125	125
TRH >C16 -C34	mg/kg	100	Org-020	1.775	11	<100	<100	0	80	102
TRH >C34 -C40	mg/kg	100	Org-020		11	<100	<100	0	92	#
Surrogate o-Terphenyl	%		Org-020		11	98	100	2	94	96

QUALITY	CONTROL: sv	rrh (C10-0	C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	1.2			1.000	20	27/01/2021	27/01/2021			10
Date analysed	-				20	28/01/2021	28/01/2021			
TRH C10 - C14	mg/kg	50	Org-020		20	<50	<50	0		1.10
TRH C15 - C28	mg/kg	100	Org-020		20	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020		20	<100	<100	0		1.00
TRH >C10-C16	mg/kg	50	Org-020		20	<50	<50	0		
TRH >C16-C34	mg/kg	100	Org-020	-	20	<100	<100	0		
TRH >C34 -C40	mg/kg	100	Org-020		20	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	1	20	98	99	1		100

QUALITY	CONTROL: sv	rrh (C10-0	C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	÷.			100	29	27/01/2021	27/01/2021			19
Date analysed	÷				29	28/01/2021	28/01/2021			
TRH C10 - C14	mg/kg	50	Org-020	1.2-5	29	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020		29	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	1.0	29	<100	<100	0		10
TRH >C10-C16	mg/kg	50	Org-020		29	<50	<50	0		
TRH >C16 -C34	mg/kg	100	Org-020		29	<100	<100	0		100
TRH >C34 -C40	mg/kg	100	Org-020		29	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	-	29	96	96	0		

QUA	LITY CONTRO	DL: PAHs i	n Soil			Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date extracted				27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	97
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	104
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	97
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	99
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	102
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	1.00
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	106
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	117	119
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		-
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	=0.	-
Surrogate p-Terphenyl-d14	%		Org-022/025	90	1	99	99	0	91	92

QUA	LITY CONTRO	DL: PAHs i	in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date extracted				100	11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed					11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Naphthalene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	97	97
Acenaphthylene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	101	
Acenaphthene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	103	101
Fluorene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	100	100
Phenanthrene	mg/kg	0.1	Org-022/025	-	11	<0.1	<0.1	0	107	101
Anthracene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	Ted	
Fluoranthene	mg/kg	0.1	Org-022/025		11	0.2	0.4	67	107	104
Pyrene	mg/kg	0.1	Org-022/025		11	0.2	0.3	40	105	105
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	-	11	0.1	0.2	67	0	1.10
Chrysene	mg/kg	0.1	Org-022/025		11	0.1	0.2	67	106	106
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	_	11	0.2	0.3	40		1.00
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		11	0.1	0.2	67	124	119
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	0	1.1
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		11	<0.1	0.1	0		1.1
Surrogate p-Terphenyl-d14	%		Org-022/025		11	98	100	2	93	93

QU	ALITY CONTRO	L: PAHs i	n Soil	_		Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted				100	20	27/01/2021	27/01/2021			-
Date analysed	+				20	28/01/2021	28/01/2021			
Naphthalene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1.1
Acenaphthylene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Acenaphthene	mg/kg	0.1	Org-022/025	-	20	<0.1	<0.1	0		
Fluorene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Phenanthrene	mg/kg	0.1	Org-022/025	-	20	<0.1	<0.1	0		
Anthracene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Fluoranthene	mg/kg	0.1	Org-022/025	-	20	<0.1	<0.1	0		-
Pyrene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1
Chrysene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	-	20	<0.2	<0.2	0		100
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		20	<0.05	<0.05	0		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	-	20	<0.1	<0.1	0		-
Surrogate p-Terphenyl-d14	%		Org-022/025		20	92	94	2		

QUA	LITY CONTRO	DL: PAHs i	n Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	1.3			100	29	27/01/2021	27/01/2021			10
Date analysed					29	28/01/2021	28/01/2021			
Naphthalene	mg/kg	0.1	Org-022/025	1.55	29	<0.1	<0.1	0		100
Acenaphthylene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		100
Acenaphthene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		100
Fluorene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Phenanthrene	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		
Anthracene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Fluoranthene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1.1
Pyrene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		
Chrysene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		29	<0.2	<0.2	0		100
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		29	<0.05	<0.05	0		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		1.15
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		-
Surrogate p-Terphenyl-d14	%		Org-022/025		29	96	97	1		

QUALITY C	ONTROL: Organo	chlorine P	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date extracted	-			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	104
нсв	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	104
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Heptachlor	mg/kg	0,1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	111
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	97
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	112
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	1.1
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	10	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	113
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	95
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	95
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		-
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	108
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	1.0
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	1100	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	120
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	
Surrogate TCMX	%		Org-022/025	102	1	106	107	1	104	106

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date extracted					11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+				11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
alpha-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	104	103
НСВ	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		-
beta-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	108	108
gamma-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		
Heptachlor	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	117	107
delta-BHC	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	000	
Aldrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	99	95
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	107	110
gamma-Chlordane	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		1.1
alpha-chlordane	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		
Endosulfan I	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		100
pp-DDE	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	111	113
Dieldrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	107	107
Endrin	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	91	120
Endosulfan II	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		-
pp-DDD	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	106	110
Endrin Aldehyde	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		1.1
pp-DDT	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	95	103
Methoxychlor	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		11	107	107	0	102	99

QUALITY C	ONTROL: Organo	chlorine F	esticides in soil			Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				20	27/01/2021	27/01/2021			-
Date analysed	+				20	28/01/2021	28/01/2021			
alpha-BHC	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1.1
нсв	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
beta-BHC	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
gamma-BHC	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Heptachlor	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		100
delta-BHC	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Aldrin	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
gamma-Chlordane	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1.0
alpha-chlordane	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Endosulfan I	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
pp-DDE	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Dieldrin	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		100
Endrin	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Endosulfan II	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
pp-DDD	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Endrin Aldehyde	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
pp-DDT	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Methoxychlor	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		20	101	102	1		100

QUALITY C	ONTROL: Organo	chlorine P	esticides in soil			Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				29	27/01/2021	27/01/2021			1
Date analysed	+				29	28/01/2021	28/01/2021			
alpha-BHC	mg/kg	0.1	Org-022/025	1.0	29	<0.1	<0.1	0		1.1
нсв	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
beta-BHC	mg/kg	0.1	Org-022/025	1.00	29	<0.1	<0.1	0		
gamma-BHC	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Heptachlor	mg/kg	0.1	Org-022/025	74-7	29	<0.1	<0.1	0		100
delta-BHC	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Aldrin	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		-
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
gamma-Chlordane	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1.1
alpha-chlordane	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		-
Endosulfan I	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		-
pp-DDE	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Dieldrin	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1.00
Endrin	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Endosulfan II	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		-
pp-DDD	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Endrin Aldehyde	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1
pp-DDT	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		-
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	-	29	<0.1	<0.1	0		
Methoxychlor	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		29	102	105	3		1.00

QUALITY CONT	ROL: Organop	hosphorus	Pesticides in So	il	_	Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date extracted	÷			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	÷			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	124	120
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	-	-
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		1.10
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	114
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	119
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	87
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	103
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	112
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0		
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	139	135
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025	102	1	106	107	1	104	106

QUALITY CONT	ROL: Organop	hosphorus	Pesticides in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date extracted	-				11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	-				11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Dichlorvos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	92	122
Dimethoate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	0.01	
Diazinon	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	1100	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	100	
Ronnel	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	112	114
Fenitrothion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	87	109
Malathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	127	124
Chlorpyriphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	105	111
Parathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	86	116
Bromophos-ethyl	mg/kg	0.1	Org-022		11	<0.1	<0.1	0	1.11	
Ethion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	103	137
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	100	
Surrogate TCMX	%		Org-022/025		11	107	107	0	102	99

QUALITY CONT	ROL: Organop	hosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted					20	27/01/2021	27/01/2021			-
Date analysed	+				20	28/01/2021	28/01/2021			
Dichlorvos	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		1.1
Dimethoate	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
Diazinon	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Ronnel	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
Fenitrothion	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Malathion	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		-
Chlorpyriphos	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Parathion	mg/kg	0,1	Org-022/025		20	<0.1	<0.1	0		1
Bromophos-ethyl	mg/kg	0.1	Org-022		20	<0.1	<0.1	0		
Ethion	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		20	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		20	101	102	1		

QUALITY CONT	ROL: Organop	hosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				29	27/01/2021	27/01/2021			-
Date analysed	-				29	28/01/2021	28/01/2021			
Dichlorvos	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Dimethoate	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Diazinon	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Ronnel	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1.10
Fenitrothion	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		1
Malathion	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Chlorpyriphos	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Parathion	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Bromophos-ethyl	mg/kg	0.1	Org-022		29	<0.1	<0.1	0		
Ethion	mg/kg	0.1	Org-022/025		29	<0.1	<0.1	0		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		29	<0.1	0.2	67		
Surrogate TCMX	%		Org-022/025		29	102	105	3		1.0

	QUALITY CONTRO	DL: PCBs in	n Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date extracted	-			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	+			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	101	191
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	0.000	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	nm.	205
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	101	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	103	1.00
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	120	120
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	2m	20
Surrogate TCMX	%		Org-021	102	1	106	107	1	104	106

0	QUALITY CONTRO	DL: PCBs in	n Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date extracted	÷			1.172.1	11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed					11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Aroclor 1016	mg/kg	0.1	Org-021	100	11	<0.1	<0.1	0	PIT 1	200
Aroclor 1221	mg/kg	0.1	Org-021		11	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	1.15	11	<0.1	<0.1	0		- PE
Aroclor 1242	mg/kg	0.1	Org-021		11	<0.1	<0.1	0		1.1
Aroclor 1248	mg/kg	0.1	Org-021	-	11	<0.1	<0.1	0		1
Aroclor 1254	mg/kg	0.1	Org-021		11	<0.1	<0.1	0	100	120
Aroclor 1260	mg/kg	0.1	Org-021		11	<0.1	<0.1	0		100
Surrogate TCMX	%		Org-021	-	11	107	107	0	102	99

G	UALITY CONTRO	DL: PCBs in	n Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			1.000	20	27/01/2021	27/01/2021			1.00
Date analysed	+			1.0	20	28/01/2021	28/01/2021			
Aroclor 1016	mg/kg	0.1	Org-021	1000	20	<0.1	<0.1	0		1.00
Aroclor 1221	mg/kg	0.1	Org-021	1	20	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021		20	<0.1	<0.1	0		1.00
Aroclor 1242	mg/kg	0.1	Org-021		20	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	1.200	20	<0.1	<0.1	0		1.00
Aroclor 1254	mg/kg	0.1	Org-021		20	<0.1	<0.1	0		-
Aroclor 1260	mg/kg	0.1	Org-021	-	20	<0.1	<0.1	0		1.10
Surrogate TCMX	%		Org-021		20	101	102	1		

G	QUALITY CONTRO	L: PCBs in	i Soil			Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			100	29	27/01/2021	27/01/2021			1
Date analysed	+				29	28/01/2021	28/01/2021			
Aroclor 1016	mg/kg	0.1	Org-021	1.210	29	<0.1	<0.1	0		1.1
Aroclor 1221	mg/kg	0.1	Org-021		29	<0.1	<0.1	0		-
Aroclor 1232	mg/kg	0.1	Org-021	1.000	29	<0.1	<0.1	0		1.10
Aroclor 1242	mg/kg	0.1	Org-021		29	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	1.77	29	<0.1	<0.1	0		100
Aroclor 1254	mg/kg	0.1	Org-021		29	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	175	29	<0.1	<0.1	0		100
Surrogate TCMX	%	_	Org-021		29	102	105	3		

QUALITY	CONTROL: Acid I	Extractable	e metals in soil			Du	plicate	-	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date prepared	÷.			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	4			28/01/2021	1	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Arsenic	mg/kg	4	Metals-020	<4	1	6	6	0	104	80
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	106	80
Chromium	mg/kg	1	Metals-020	<1	1	14	14	0	103	84
Copper	mg/kg	1	Metals-020	<1	1	11	12	9	106	99
Lead	mg/kg	1	Metals-020	<1	1	66	63	5	102	81
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	94	104
Nickel	mg/kg	1	Metals-020	<1	1	4	4	0	105	82
Zinc	mg/kg	1	Metals-020	<1	1	33	31	6	103	81

QUALITY	CONTROL: Acid	Extractable	metals in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date prepared				1.152	11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Date analysed	-				11	28/01/2021	28/01/2021		28/01/2021	28/01/2021
Arsenic	mg/kg	4	Metals-020	1975	11	5	5	0	109	81
Cadmium	mg/kg	0.4	Metals-020		11	<0.4	<0.4	0	111	86
Chromium	mg/kg	1	Metals-020	1100	11	12	15	22	108	107
Copper	mg/kg	1	Metals-020		11	46	16	97	110	108
Lead	mg/kg	1	Metals-020	-	11	38	36	5	106	73
Mercury	mg/kg	0.1	Metals-021		11	<0.1	<0.1	0	103	109
Nickel	mg/kg	1	Metals-020		11	5	4	22	109	73
Zinc	mg/kg	1	Metals-020	-	11	24	22	9	109	#

QUALITY	CONTROL: Acid I	Extractable	metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared				1.000	20	28/01/2021	28/01/2021			1.00
Date analysed	-			1.0	20	28/01/2021	28/01/2021			
Arsenic	mg/kg	4	Metals-020	1.000	20	5	5	0		10
Cadmium	mg/kg	0.4	Metals-020		20	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	-	20	12	12	0		-
Copper	mg/kg	1	Metals-020		20	19	21	10		
Lead	mg/kg	1	Metals-020	-	20	25	27	8		1.0
Mercury	mg/kg	0.1	Metals-021		20	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	-	20	13	14	7		1
Zinc	mg/kg	1	Metals-020		20	39	42	7		

QUALITY	CONTROL: Acid I	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			100	29	28/01/2021	28/01/2021			100
Date analysed	-				29	28/01/2021	28/01/2021			
Arsenic	mg/kg	4	Metals-020	1.010	29	12	13	8		1.00
Cadmium	mg/kg	0.4	Metals-020		29	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	1.000	29	8	9	12		10
Copper	mg/kg	1	Metals-020		29	10	14	33		
Lead	mg/kg	1	Metals-020	79-1	29	28	30	7		- 70
Mercury	mg/kg	0.1	Metals-021		29	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	1151	29	4	4	0		100
Zinc	mg/kg	1	Metals-020		29	33	33	0		

Date analysed

Total Phenolics (as Phenol)

Client Reference: 99872.01, Marsden High School West Ryde

QUALI	TY CONTROL:	Misc Soil	- Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	260039-3
Date prepared	÷			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed	÷			27/01/2021	1	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	100	98
QUALI	TY CONTROL:	Misc Soil	- Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	260039-21
Date prepared				100	11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Date analysed				10	11	27/01/2021	27/01/2021		27/01/2021	27/01/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	1 5357.1	11	<5	<5	0	99	99
QUALI	TY CONTROL:	Misc Soil	- Inorg		_	Du	plicate	_	Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	÷			0.00	20	27/01/2021	27/01/2021		107	199
Date analysed	-			the s	20	27/01/2021	27/01/2021		140	1.1
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031		20	<5	<5	0	DITI	272
QUALI	TY CONTROL:	Misc Soil	- Inorg			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared				1.75	29	27/01/2021	27/01/2021		100	1.121
					1		the second second second second second			

5

mg/kg

Inorg-031

27/01/2021

<5

29 29 27/01/2021

<5

0

QL	JALITY CONTROL	: Misc Inor	g - Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			28/01/2021	9	28/01/2021	28/01/2021		28/01/2021	
Date analysed				28/01/2021	9	28/01/2021	28/01/2021		28/01/2021	
pH 1:5 soil:water	pH Units		Inorg-001	INT	9	4.9	5.0	2	100	

	QUALITY CONT	TROL: CE	C.			Du	plicate	-	Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	260039-9
Date prepared	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Date analysed	-			29/01/2021	2	29/01/2021	29/01/2021		29/01/2021	29/01/2021
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	2	1.6	1.5	6	105	104
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	2	0.4	0.3	29	105	91
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	2	1.5	1.4	7	107	106
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	2	0.29	0.35	19	111	79

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 260039-11 for Cu. Therefore a triplicate result has been issued as laboratory sample number 260039-46.

- # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TRH_S_NEPM:

Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample/s 260039-21ms have caused interference.

46

Douglas Partners Geotechnics | Environment | Groundwater

Project No:		99872	2.01			Suburb: West Ryde						To: Envirolab Services Pty Ltd				
Project Nam	ne:	Marsd	len High Sc	hool		Order I	Number					12 4	shley St	reet, Chat	swood, NSW 2067	
Project Man	ager:	´ Lisa T				Sample	ər:	TM			Attn: Aileen Hie					
Emails:			eng@doug	laspartn	ers.com.a						Phone:					
Date Requir		Stand									Email:			olab.com		
Prior Storag	je: Fridge	e/freezei	r									handle, tra	insport and	store in acc	ordance with FPM HAZID)	
			pled	Sample Type	Container Type		r			Analytes	s 					
Sample ID-	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	COMBO 84	COMBO 3A	COMBO 3	pH and CEC	plod	TRH BTEX	Combo 8			Notes/preservation	
BH1	0-0.1		18/01/21			x										
BH1	0.4-0.5	2	18/01/21					x	x					L		
BH2	0.4-0.5	3	19/01/21		·	<u>x</u>						i				
BH2	1.4-1.5	-72R	19/01/21					\mathbf{X}							Envirolab Services	
BH3	0-0.1	4	18/01/21			x									12 Ashley St Chatswood NSW 2067	
BH4	0.4-0.5	5	18/01/21			x								Job No:	Ph: (02) 9910 6200	
BH4	2-2.1	6	18/01/21							×				Date Recei		
BH5	1-1.1	7	18/01/21			X				·				T' Dooo	(1) (1) (1) (1)	
BH5	2-2.1	8	18/01/21				x							Received E		
BH5	2.9-3.0	.q	18/01/21					x	X					Cooling: Ic	e Cepack	
BH6	0-0.1	10	19/01/21			x							~	Security: Ir	tact/Broken/None	
BH7	0.4-0.5	1	19/01/21			X										
BH7	1.4-1.5	12	19/01/21				x									
BH7	2.4-2.5	13	19/01/21					x	x			· 				
BH8	0-0.1	14	19/01/21			Χ										
PQL (S) mg/ PQL = pract		titation	limit If pr	ne diver	default to	Laborate	L	d Datactic	n Limit	I	1				req'd for all water analytes	
Metals to A					, ueraun lo						Lab R	eport/Ref	ference l	No:		
Total number	er of sam				Relin	nquishec	by:		Transpo	rted to l	aboratory	by:				
Send Result	ts to:	Dou	uglas Partn	ers Pty Lt									Phone	: ,	Fax:	
Signed:					Received	by:	En in	olab	-N2			Date & 1	lime:	21/0	1/21 16-540	

Douglas Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		99872				Suburb):	West R	yde		To: Envirolab Services Pty Ltd				
Project Nam	e:	Marsd	len High Sc	hool		Order N	Number							tswood, NSW 2067	
Project Mana	ager:	Lisa T				Sample	er:	TM			Attn: Aileen Hie				
Emails:			eng@doug	laspartn	ers.com.a						Phone:				
Date Require			ard 🛛						-		Email: <u>Ahie@envirolab.com.au</u>				
Prior Storage	e: Fridge	/freeze	r	I		Do samp	oles contai	n 'potential	' HBM?	No 🗆	(If YES, then han	dle, transport a	nd store in acc	cordance with FPM HAZID)	
			pled	Sample Type	Container Type					Analytes	; 			_	
Sample ID	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	COMBO 8/	COMBO 3A	COMBO 3	pH and CEC	НОГР				Notes/preservation	
BH8	0.4-0.5	15	19/01/21	S	G		x								
BH8	2-2.1	16.	19/01/21	S	G		x				<u> </u>				
BH8	3.5-3.6	17 >	19/01/21	s	G			x	x				<u>`</u>		
BH9	0-0.1	18	19/01/21	s	G	X									
BH9	0.4-0.5	19	19/01/21	s	G					x			\rightarrow	Envirolab Services	
BH10	0-0.1	20	19/01/21	s	G	X						(TIV ROLAB CH	12 Ashley St natswood NSW 2067	
BH11	0-0.1	21	18/01/21	s	G	X							Job No:	Ph: (02) 9910 6200	
BH11	0.4-0.5	22	18/01/21	s	G		x						Date Received		
BH11	0.9-1.0	23	18/01/21	s	G		x						Time Received	16 540	
BH12	0.4-0.5	24	19/01/21	s	G	х							Received By)		
BH13	0-0.1	25	19/01/21	s	G	x							Cooling: Iconic	epack	
BH13	0.9-1.0	Z6	19/01/21	S	G			x	Х				Sedurity: Intac	VBroken/None	
BH13	1.4-1.5	2)	19/01/21	s	G					X					
BH14	0.4-0.5	28	18/01/21	S	G	Х									
BH15	0-0.1	29	18/01/21	S	G	Х									
PQL (S) mg/l												ANZ	ECC PQLs	req'd for all water analytes	
PQL = practi					, default to	Laborato	ry Metho	d Detectio	on Limit		Lab Repo	rt/Referenc	e No:		
Metals to An Total numbe				ea nere:	Rolin	nquished	by:		Transpo	rted to 1	aboratory by:				
Send Result			uglas Partn	ers Ptv I f			by.		iranspo		aboratory by.	Pho	<u></u>	Fax:	
								P	N. T-	<u> </u>	Dat			1121 16160	
Signed:					Received			Gn	irelo	rb,	1 Dat	e & Time:	21/0	1/21 16:40	

.

Douglas Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		99872				Suburb: West Ryde						To: Envirolab Services Pty Ltd				
Project Name	e:		den High Sc	hool			Number				<u> </u>	12 Ashley Street, Chatswood, NSW 2067				
Project Mana	ager:	Lisa T				Sample	ər:	ТМ			Attn: Aileen Hie					
Emails:			<u>eng@doug</u>	<u>laspartn</u>	<u>ers.com.a</u>						Phone:					
Date Require			lard 🛛									Email: Ahie@envirolab.com.au				
Prior Storage	e: Fridge	e/freeze	r			Do sam	oles contair	n 'potential	' HBM?	No 🗆	(If YES, the	n handle, tra	ansport and store in accordance with FPM HAZID)			
			pled	Sample Type	Container Type					Analytes	S					
Sample ID	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	COMBO 8A	COMBO 3A	COMBO 3	pH and CEC	plod	TRH BTEX	Combo 8	Notes/preservation			
BH16	0-0.1	30	-19/01/21	S	G	x										
BH16	0.9-1.0	31	19/01/21	S	G					x						
BH17	0.4-0.5	<u> </u>	19/01/21	S	G	<u>X</u>										
BH18	0-0.1	33	19/01/21	S	G		x		•				EnviroSab Services			
BH19	0.4-0.5	34	18/01/21	S	G	X							ENVIROLIB 12 Ashley St Chatswood NSW 2067			
BH19	1.4-1.5	32	18/01/21	S	G					<u>x</u>			Ph: (02) 9910 6200			
BH20	0-0.1	36	18/01/21	S	G	X							Date Received: 210121-			
BH21	0-0.1	37	19/01/21	S	G	X							Time Received			
BH22	0.4-0.5	38	18/01/21	S	G		x						Received By:) C 10 FU			
BH23	0.4-0.5	39	19/01/21	S	G		x						Cooling: cercepack			
BD1/20210118	-	40	18/01/21	S	G							x	Security: Intact/Broken/None			
BD10/20210119	-	41	19/01/21	S	G			x								
BD2/20210118		42	18/01/21	S	G			x		ļ			· · · · · · · · · · · · · · · · · · ·			
BD6/20210119				S	G							x	SEND AS INTERLAB TO SG			
Trip Spike		43	18-19/01/21	S	G						X					
PQL (S) mg/l						Laborat					 	L	ANZECC PQLs req'd for all water analytes			
PQL = practi Metals to An					, default to	Laporato	Laboratory Method Detection Limit					eport/Re	eference No:			
Total numbe					Relir	quished	by:	T	Transpo	rted to l	aboratory	/ by:	<u> </u>			
Send Result		Douglas Partners Pty Ltd Address:											Phone: Fax:			
Signed:			Received by:					FANA	rilat	<u>1</u>		Date & T	Time: >1/61/21 + C + C			

Douglas' Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		99872	2.01			Suburb):	West Ry	/de		То:	Env	irolab Ser	vices Pty	Ltd
Project Name	e:	Marso	den High So	hool		Order N	lumber			-				eet, Chat	swood, NSW 2067
Project Mana	iger:	Lisa T	eng			Sample	er:	TM			Attn:	Aile	en Hie		
Emails:		.isa.Te	eng@doug	laspartn	ers.com.a						Phone:				
Date Require	ed:	Stand	lard 🛛								Email: Ahie@envirolab.com.au				
Prior Storage		e/freeze	r			Do samp	les contai	n 'potential'	'HBM?	No 🗆	(If YES, ther	handle, tra	nsport and s	store in acco	ordance with FPM HAZID)
			pled	Sample Type	Container Type					Analytes	5				
Sample ID	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	COMBO 8/	COMBO 3A	COMBO 3	pH and CEC	hold	ТКН ВТЕХ	Combo 8			Notes/preservation
Trip Blank	-	44	18-19/01/21	S	G						x				
BH2	1-4-1-5	45	19/01/2	4											
, 		\uparrow	1	al											
		exire	recen	RO1.											
											1				
			· · · ·												
														En	rirolab Services
											┟		<u> </u>		12 Ashiev St vood NSW 2067
														Ph	: (02) 9910 6200
													Job N	<u>o:</u>	260039
											[leceived:	210121
													Receiv	eceived:	N 16-40
													Temp:	Cool/Ambie	Rt.
						_							Coolin Securi	g: ice/icepa ty: inta st/Br o	ken/Nono
				-									Occur	ry. magebic	
	·														
PQL (S) mg/k													ANZEC	C PQLs I	req'd for all water analytes 🛛
PQL = praction Metals to Ana					, default to	Laborato	ry Metho	d Detectio	on Limit		Lab Ro	eport/Ref	ference N	lo:	
Total number	r of sam	ples in (container:			quished	by:		Transpo	rted to la	laboratory by:				
Send Results	s to:	Do	uglas Partn	ers Pty Li									Phone:		Fax:
Signed:					Received	by:		-EAAA	YALOI	b	m_I	Date & T	ime:	-51	01/21-16260
								•••	10000		•			[10 10 10

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details							
Client	Douglas Partners Pty Ltd						
Attention	Lisa Teng						

Sample Login Details	The second se
Your reference	99872.01, Marsden High School West Ryde
Envirolab Reference	260039
Date Sample Received	21/01/2021
Date Instructions Received	21/01/2021
Date Results Expected to be Reported	29/01/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	45 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16.4
Cooling Method	Ice
Sampling Date Provided	YES

Comments

extra 250ml jar sample received labelled BH 19/01/21

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRHIC6-CIONBTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides In Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	As bestos (D - solis	Misc Inorg - Soil	CEC	On Hold
BH1-0-0.1	1	1	1	1	1	1	1	1	1			
BH1-0.4-0.5	1	1	1		1	1	1	-		1	1	
BH2-0.4-0.5	1	1	1	1	1	1	1	~	1			
BH3-0-0.1	1	1	1	1	1	1	1	1	1			
BH4-0.4-0.5	1	1	1	1	1	~	1	1	1			
BH4-2-2.1												1
BH5-1-1.1	1	1	1	1	1	1	1	1	1			
BH5-2-2.1	1	1	1				1		1		-	
BH5-2.9-3.	1	1	1			11	1			1	1	
BH6-0-0.1	1	1	1	1	1	1	1	1	1		1	
BH7-0.4-0.5	1	1	1	1	1	1	1	1	1			
BH7-1.4-1.5	1	1	1			1	1		1			
BH7-2.4-2.5	1	1	1			1	1		1	1	1	
BH8-0-0.1	1	1	1	1	1	1	1	1	1			
BH8-0.4-0.5	1	1	1			1	1		1			
BH8-2-2.1	1	1	1				1		1			
BH8-3.5-3.6	1	1	1				1			1	1	
BH9-0-0.1	1	1	1	1	1	1	1	1	1			
BH9-0.4-0.5			157			1						1
BH10-0-0.1	1	1	1	1	1	1	1	1	1			
BH11-0-0.1	1	1	1	1	1	1	1	1	1			
BH11-0.4-0.5	1	1	1				1		1			
BH11-0.9-1.0	1	1	1				1		1			
BH12-0.4-0.5	1	1	1	1	1	1	1	1	1			
BH13-0-0.1	1	1	1	1	1	~	1	1	1			
BH13-0.9-1.0	1	1	1				1			1	1	
BH13-1.4-1.5							1					1
BH14-0.4-0.5	1	1	1	1	1	1	1	1	1			
BH15-0-0.1	1	1	1	1	1	1	1	1	1			
BH16-0-0.1	1	1	1	1	1	1	1	1	1			
BH16-0.9-1.0												1
BH17-0.4-0.5	1	1	1	1	1	1	1	1	1			

Envirolab Services Pty Ltd

ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRHICS-CIONBTEXM in Soil	svTRH (C10-C40) in Soll	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soll	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Ashestos (D - soles	Misc Inorg - Soil	CEC	On Hold
BH18-0-0.1	1	1	1				1		1	-		
BH19-0.4-0.5	1	1	1	1	1	1	1	~	1			
BH19-1.4-1.5												1
BH20-0-0.1	1	1	1	1	1	1	1	1	1	1		
BH21-0-0.1	1	1	1	1	1	~	1	1	1			
BH22-0.4-0.5	1	1	1				1		1			
BH23-0.4-0.5	1	1	1			123	1		~			
BD1/20210118	1	1	1	1	1	1	1	1				
BD10/20210119	1	1	1				1		-	-	-	
BD2/20210118	1	1	1	-			1					-
Trip Spike	1			-								
Trip Blank	1											
BH2-1.4-1.5	1	1	1				1					

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 260039-B

Client Details		
Client	Douglas Partners Pty Ltd	
Attention	Lisa Teng	
Address	96 Hermitage Rd, West Ryde, NSW, 2114	

Sample Details					
Your Reference	99872.01, Marsden High School West Ryde				
Number of Samples	45 soil				
Date samples received	21/01/2021				
Date completed instructions received	02/02/2021				

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	09/02/2021	
Date of Issue	05/02/2021	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Ken Nguyen, Reporting Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference 260039-B Revision No: R00

Page | 1 of 6

Our Reference		260039-B-4	260039-B-18	260039-B-21
Your Reference	UNITS	BH3	BH9	BH11
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		18/01/2021	19/01/2021	18/01/2021
Type of sample		soil	soil	soil
Date extracted		04/02/2021	04/02/2021	04/02/2021
Date analysed	-	04/02/2021	04/02/2021	04/02/2021
pH of soil for fluid# determ.	pH units	9.0	8.3	9.2
pH of soil TCLP (after HCI)	pH units	1.8	1.7	1.9
Extraction fluid used		1	1	1
pH of final Leachate	pH units	5.2	5.0	5.3
Lead in TCLP	mg/L		<0.03	P.
Nickel in TCLP	mg/L	0.02		<0.02

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.

QUALITY	QUALITY CONTROL: Metals in TCLP USEPA1311						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021		
Date analysed	-			04/02/2021	[NT]		[NT]	[NT]	04/02/2021		
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]		[NT]	[NT]	90		
Nickel in TCLP	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]		INTI	[N7]	92		

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

From:	
Sent:	
Го:	
Subject:	

Aileen Hie Tuesday, 2 February 2021 1:25 PM Ming To FW: Additional TCLP

From: Lisa Teng <Lisa.Teng@douglaspartners.com.au> Sent: Tuesday, 2 February 2021 1:19 PM To: Aileen Hie <AHie@envirolab.com.au> Subject: RE: Additional TCLP

Pef: 260039-B TAT: Standard Due: 09/02/2021 MT

CLIEN

2020

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi aileen,

Sorry – I must have quoted the interlab job number.

Correct job numbers are:

ELS 260039 Marsden High School

- 4 → BH3/0-0.1 nickel TCLP
- S BH9/0-0.1 Lead TCLP
- म्) BH11/0-0.1 nickel TCLP

ELS 260173 Meadowbank Public School

- BH4/0.1-0.2 Nickel TCLP
- BH7/0.1-0.2 B(a)P TCLP
- BH11/0.9-1.0 B(a)P TCLP

Lisa Teng | Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0437 976 196 | E: <u>Lisa.Teng@douglaspartners.com.au</u>

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Aileen Hie <<u>AHie@envirolab.com.au</u>> Sent: Tuesday, 2 February 2021 1:13 PM To: Lisa Teng <<u>Lisa.Teng@douglaspartners.com.au</u>> Subject: RE: Additional TCLP

ANALYTICAL REPORT

- CLIENT DETAILS	Contraction of the local data and the local data an	LABORATORY DETA	I.S
Contact	Lisa Teng	Manager	Huong Crawford
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	96 Hermitage Road	Address	Unit 16, 33 Maddox St
	West Ryde		Alexandria NSW 2015
	NSW 2114		
Telephone	02 9809 0666	Telephone	+61 2 8594 0400
Facsimile	02 9809 4095	Facsimile	+61 2 8594 0499
Email	lisa.teng@douglaspartners.com.au	Email	au.environmental.sydney@sgs.com
Project	99872.01 Marsden High School	SGS Reference	SE215773 R0
Order Number	(Not specified)	Date Received	22 Jan 2021
Samples	1	Date Reported	01 Feb 2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES .

Akheeqar BENIAMEEN Chemist

kinter

Ly Kim HA Organic Section Head

Bennet LO Senior Organic Chemist/Metals Chemis

on

Shane MCDERMOTT Inorganic/Metals Chemist

Dong LIANG Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 13

ANALYTICAL REPORT

Sample Number SE215773.001

SE215773 R0

		Sample Matrix Sample Date Sample Name	Soil 19 Jan 2021 BD6/20210119
Parameter	Units	LOR	
VOC's in Soil Method: AN433 Tested: 28/1/2021			
Monocyclic Aromatic Hydrocarbons			
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1

Polycyclic VOCs

Naphthalene	mg/kg	0.1	<0.1	

Surrogates

d4-1,2-dichloroethane (Surrogate)	%	-	83
d8-toluene (Surrogate)	%	-	91
Bromofluorobenzene (Surrogate)	%		67

Totals

Total Xylenes	mg/kg	0.3	<0.3	
Total BTEX	mg/kg	0.6	<0.6	

Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tested: 28/1/2021

TRH C6-C10	mg/kg	25	<25
TRH C6-C9	mg/kg	20	<20

d4-1,2-dichloroethane (Surrogate)	%	-	83
d8-toluene (Surrogate)	%	-	91
Bromofluorobenzene (Surrogate)	%	-	67

ANALYTICAL REPORT

SE215773 R0

		Sam Sar	e Number ple Matrix nple Date ple Name	SE215773.001 Soil 19 Jan 2021 BD6/20210119
Parameter Volatile Petroleum Hydrocarbons in Soll	Method: AN433	Units Tested: 28/1/2021	LOR (contine	ued)
VPH F Bands Benzene (F0)		mg/kg	0.1	<0.1
TRH C6-C10 minus BTEX (F1)		mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soll Method: AN403 Tested: 28/1/2021

mg/kg	20	
nigrky	20	<20
mg/kg	45	<45
mg/kg	45	55
mg/kg	100	<100
mg/kg	110	<110
mg/kg	210	<210
	mg/kg mg/kg mg/kg	mg/kg 45 mg/kg 100 mg/kg 110

TRH F Bands

TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 28/1/2021

Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1
Pyrene	mg/kg	0.1	0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

ANALYTICAL REPORT

Parameter	Units	Sample Number Sample Matrix Sample Date Sample Name LOR	SE215773.001 Soil 19 Jan 2021 BD6/20210119
PAH (Polynuclear Aromatic Hydrocarbons) in Soli	Method: AN420	Tested: 28/1/2021	(continued)
Surrogates	method. Altizo	TESTER, ENTITIEVET	leonningen)
d5-nitrobenzene (Surrogate)	%	1.94	110
2-fluorobiphenyl (Surrogate)	%	- 1	89
d14-p-terphenyl (Surrogate)	%	-	93

Speciated Phenois in Soli Method: AN420 Tested: 28/1/2021

Phenol	mg/kg	0.5	<0.5
2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5
3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1
Total Cresol	mg/kg	1.5	<1.5
2-chlorophenol	mg/kg	0.5	<0.5
2,4-dimethylphenol	mg/kg	0.5	<0.5
2,6-dichlorophenol	mg/kg	0.5	<0.5
2,4-dichlorophenol	mg/kg	0.5	<0.5
2,4,6-trichlorophenol	mg/kg	0.5	<0.5
2-nitrophenol	mg/kg	0.5	<0.5
I-nitrophenol	mg/kg	1	<1
2,4,5-trichlorophenol	mg/kg	0.5	<0.5
2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1
Pentachlorophenol	mg/kg	0.5	<0.5
2,4-dinitrophenol	mg/kg	2	<2
4-chloro-3-methylphenol	mg/kg	2	<2
Surrogates			
2,4,6-Tribromophenol (Surrogate)	%	÷.	86
d5-phenol (Surrogate)	%	-	81

OC Pesticides in Soil Method: AN420 Tested: 28/1/2021

Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

ANALYTICAL REPORT

SE215773 R0

			3	ample Number Sample Matrix Sample Date Sample Name	SE215773.001 Soil 19 Jan 2021 BD6/20210119
Parameter			Units	LOR	
OC Pesticides in Soil	Method: AN420	Tested: 28/1/2021	(continued)		
Surrogates					
Tetrachloro-m-xylene (TCMX) (Surrogate)		%	-	87
OP Pesticides in Soil	Method: AN420	Tested: 28/1/2021			
Dichlorvos			mg/kg	0.5	<0.5
Dimethoate			mg/kg	0.5	<0.5
Diazinon (Dimpylate)			mg/kg	0.5	<0.5
Fenitrothion			mg/kg	0.2	<0.2

Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

Surrogates

2-fluorobiphenyl (Surrogate)	%	0	89
d14-p-terphenyl (Surrogate)	%	-	93

PCBs in Soil Method: AN420 Tested: 28/1/2021

Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL REPORT

SE215773 R0

		Sample Number Sample Matrix Sample Date Sample Name	Soil 19 Jan 2021
Parameter	Units	LOR	
PCBs in Soil Method: AN420 Tested: 2 Surrogates	8/1/2021 (continued)		
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87
Total Recoverable Elements in Soil/Waste	Solids/Materials by ICPOES	Method: AN040	0/AN320 Tested: 28/1/
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	13
Copper, Cu	mg/kg	0.5	18
Nickel, Ni	mg/kg	0.5	7.5
Lead, Pb	mg/kg	1	32
Zinc, Zn	mg/kg	2	53
Mercury in Soil Method: AN312 Tested	1: 28/1/2021		
Mercury	mg/kg	0.05	<0.05
Moisture Content Method: AN002 Test	ed: 28/1/2021		
% Moisture	%w/w	1	15.5

01-February-2021

QC SUMMARY

SE215773 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery
Mercury	LB217507	mg/kg	0.05	<0.05	0%	99%	89%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD	
% Moisture	LB217482	%w/w	1	3 - 4%	

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Hexachlorobenzene (HCB)	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Alpha BHC	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Lindane	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Heptachlor	LB217481	mg/kg	0.1	<0.1	0%	70%	66%
Aldrin	LB217481	mg/kg	0.1	<0.1	0%	68%	64%
Beta BHC	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Delta BHC	LB217481	mg/kg	0.1	<0.1	0%	69%	65%
Heptachlor epoxide	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDE	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Endosulfan	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Gamma Chlordane	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Chlordane	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
trans-Nonachlor	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDE	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Dieldrin	LB217481	mg/kg	0.2	<0.2	0%	73%	69%
Endrin	LB217481	mg/kg	0.2	<0.2	0%	74%	70%
o,p'-DDD	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDT	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Beta Endosulfan	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
p,p'-DDD	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDT	LB217481	mg/kg	0.1	<0.1	0%	74%	62%
Endosulfan sulphate	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Aldehyde	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Methoxychlor	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Ketone	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Isodrin	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Mirex	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Total CLP OC Pesticides	LB217481	mg/kg	1	<1	0%	NA	NA

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB217481	%	14	88%	1 - 8%	76%	77%

QC SUMMARY

SE215773 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OF Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Dichlorvos	LB217481	mg/kg	0.5	<0.5	0%	130%	115%
Dimethoate	LB217481	mg/kg	0.5	<0.5	0%	NA	NA
Diazinon (Dimpylate)	LB217481	mg/kg	0.5	<0.5	0%	98%	116%
Fenitrothion	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Malathion	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB217481	mg/kg	0.2	<0.2	0%	91%	112%
Parathion-ethyl (Parathion)	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Bromophos Ethyl	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Methidathion	LB217481	mg/kg	0.5	<0.5	0%	NA	NA
Ethion	LB217481	mg/kg	0.2	<0.2	0%	91%	90%
Azinphos-methyl (Guthion)	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Total OP Pesticides*	LB217481	mg/kg	1.7	<1.7	0%	NA	NA

Surrogates

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
2-fluorobiphenyl (Surrogate)	LB217481	%		94%	2 - 3%	92%	88%
d14-p-terphenyl (Surrogate)	LB217481	%	-	92%	2 - 3%	86%	83%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-(ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference	-	and the second			%Recovery	%Recovery
Naphthalene	LB217481	mg/kg	0.1	<0.1	0%	94%	109%
2-methylnaphthalene	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Acenaphthylene	LB217481	mg/kg	0.1	<0.1	0%	96%	108%
Acenaphthene	LB217481	mg/kg	0.1	<0.1	0%	101%	106%
Fluorene	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Phenanthrene	LB217481	mg/kg	0.1	<0.1	41 - 68%	95%	107%
Anthracene	LB217481	mg/kg	0.1	<0.1	0 - 7%	93%	104%
Fluoranthene	LB217481	mg/kg	0.1	<0.1	52 - 72%	92%	106%
Pyrene	LB217481	mg/kg	0.1	<0.1	45 - 71%	100%	105%
Benzo(a)anthracene	LB217481	mg/kg	0.1	<0.1	0 - 77%	NA	NA
Chrysene	LB217481	mg/kg	0.1	<0.1	4 - 89%	NA	NA
Benzo(b&j)fluoranthene	LB217481	mg/kg	0.1	<0.1	25 - 78%	NA	NA
Benzo(k)fluoranthene	LB217481	mg/kg	0.1	<0.1	0 - 25%	NA	NA
Benzo(a)pyrene	LB217481	mg/kg	0.1	<0.1	26 - 68%	110%	105%
Indeno(1,2,3-cd)pyrene	LB217481	mg/kg	0.1	<0.1	0 - 50%	NA	NA
Dibenzo(ah)anthracene	LB217481	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(ghi)perylene	LB217481	mg/kg	0.1	<0.1	0 - 49%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>LB217481</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0 - 60%</td><td>NA</td><td>NA</td></lor=0<>	LB217481	TEQ (mg/kg)	0.2	<0.2	0 - 60%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>LB217481</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0 - 44%</td><td>NA</td><td>NA</td></lor=lor<>	LB217481	TEQ (mg/kg)	0.3	<0.3	0 - 44%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>LB217481</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0 - 66%</td><td>NA</td><td>NA</td></lor=lor>	LB217481	TEQ (mg/kg)	0.2	<0.2	0 - 66%	NA	NA
Total PAH (18)	LB217481	mg/kg	0.8	<0.8	20 - 102%	NA	NA
Total PAH (NEPM/WHO 16)	LB217481	mg/kg	0.8	<0.8			

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
d5-nitrobenzene (Surrogate)	LB217481	%		92%	2 - 3%	90%	109%
2-fluorobiphenyl (Surrogate)	LB217481	%	-4	94%	2 - 3%	92%	88%
d14-p-terphenyl (Surrogate)	LB217481	%		92%	2 - 3%	86%	83%

QC SUMMARY

SE215773 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-(ENV)AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arochlor 1016	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1221	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1232	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1242	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1248	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1254	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1260	LB217481	mg/kg	0.2	<0.2	0%	132%	120%
Arochlor 1262	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1268	LB217481	mg/kg	0.2	<0.2	0%	NA	NA
Total PCBs (Arochlors)	LB217481	mg/kg	1	<1	0%	NA	NA

Surrogates		
	_	-

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB217481	%		88%	1 - 8%	76%	77%

Speciated Phenois in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Phenol	LB217481	mg/kg	0.5	<0.5	92%
2-methyl phenol (o-cresol)	LB217481	mg/kg	0.5	<0.5	NA
3/4-methyl phenol (m/p-cresol)	LB217481	mg/kg	1	<1	NA
Total Cresol	LB217481	mg/kg	1.5	<1.5	NA
2-chlorophenol	LB217481	mg/kg	0.5	<0.5	NA
2,4-dimethylphenol	LB217481	mg/kg	0.5	<0.5	NA
2,6-dichlorophenol	LB217481	mg/kg	0.5	<0.5	NA
2,4-dichlorophenol	LB217481	mg/kg	0.5	<0.5	84%
2,4,6-trichlorophenol	LB217481	mg/kg	0.5	<0.5	84%
2-nitrophenol	LB217481	mg/kg	0.5	<0.5	NA
4-nitrophenol	LB217481	mg/kg	1	<1	NA
2,4,5-trichlorophenol	LB217481	mg/kg	0.5	<0.5	NA
2,3,4,6/2,3,5,6-tetrachlorophenol	LB217481	mg/kg	1	<1	NA
Pentachlorophenol	LB217481	mg/kg	0.5	<0.5	72%
2,4-dinitrophenol	LB217481	mg/kg	2	<2	NA
4-chioro-3-methylphenol	LB217481	mg/kg	2	<2	NA

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
2,4,6-Tribromophenol (Surrogate)	LB217481	%	Le l	89%	91%
d5-phenol (Surrogate)	LB217481	%	-	92%	92%

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-(ENV)AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB217499	mg/kg	1	<1	3 - 12%	105%	85%
Cadmium, Cd	LB217499	mg/kg	0.3	<0.3	0%	93%	85%
Chromium, Cr	LB217499	mg/kg	0.5	<0.5	5 - 10%	100%	85%
Copper, Cu	LB217499	mg/kg	0.5	<0.5	1 - 2%	105%	85%
Nickel, Ni	LB217499	mg/kg	0.5	<0.5	1-7%	99%	71%
Lead, Pb	LB217499	mg/kg	1	<1	3 - 4%	103%	82%
Zinc, Zn	LB217499	mg/kg	2	<2.0	1 - 4%	100%	73%

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB217481	mg/kg	20	<20	0%	93%	98%
TRH C15-C28	LB217481	mg/kg	45	<45	0%	85%	98%
TRH C29-C36	LB217481	mg/kg	45	<45	0%	73%	85%
TRH C37-C40	LB217481	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB217481	mg/kg	110	<110	0%	NA	NA
TRH >C10-C40 Total (F bands)	LB217481	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery
TRH >C10-C16	LB217481	mg/kg	25	<25	0%	90%	98%
TRH >C10-C16 - Naphthalene (F2)	LB217481	mg/kg	25	<25	0%	NA	NA
TRH >C16-C34 (F3)	LB217481	mg/kg	90	<90	0%	80%	95%
TRH >C34-C40 (F4)	LB217481	mg/kg	120	<120	0%	75%	NA

VOC's in Sail Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Benzene	LB217480	mg/kg	0.1	<0.1	0%	82%	64%
Toluene	LB217480	mg/kg	0.1	<0.1	0%	83%	65%
Ethylbenzene	LB217480	mg/kg	0.1	<0.1	0%	80%	66%
m/p-xylene	LB217480	mg/kg	0.2	<0.2	0%	80%	67%
o-xylene	LB217480	mg/kg	0.1	<0.1	0%	81%	67%

Polycyclic VOCs

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB217480	mg/kg	0.1	<0.1	0%	NA	NA

Surrogates

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
d4-1,2-dichloroethane (Surrogate)	LB217480	%	1	109%	0 - 20%	104%	79%
d8-toluene (Surrogate)	LB217480	%	-	122%	1 - 20%	116%	85%
Bromofluorobenzene (Surrogate)	LB217480	%	-	108%	0 - 20%	91%	60%

Totals

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Total Xylenes	LB217480	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX	LB217480	mg/kg	0.6	<0.6	0%	NA	NA

QC SUMMARY

SE215773 R0

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-(ENV)AN433

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C6-C10	LB217480	mg/kg	25	<25	0%	87%	64%
TRH C6-C9	LB217480	mg/kg	20	<20	0%	88%	66%

Surrogates

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
d4-1,2-dichloroethane (Surrogate)	LB217480	%	1.1	109%	0 - 20%	104%	79%
d8-toluene (Surrogate)	LB217480	%		122%	1 - 20%	116%	85%
Bromofluorobenzene (Surrogate)	LB217480	%		108%	0 - 20%	91%	60%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference	and the second second				%Recovery	%Recovery
Benzene (F0)	LB217480	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB217480	mg/kg	25	<25	0%	90%	62%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
N040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
N040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
N403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

FOOTNOTES ____

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	ţ1	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.		The sample was not analysed for this analyte
***	Indicates that both * and ** apply.	NVL	Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

SE215773 R0

CLIENT DETAILS		LABORATORY DETAI	Ls
Contact	Lisa Teng	Manager	Huong Crawford
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	96 Hermitage Road West Ryde NSW 2114	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9809 0666	Telephone	+61 2 8594 0400
Facsimile	02 9809 4095	Facsimile	+61 2 8594 0499
Email	lisa.teng@douglaspartners.com.au	Email	au.environmental.sydney@sgs.com
Project	99872.01 Marsden High School	SGS Reference	SE215773 R0
Order Number	(Not specified)	Date Received	22 Jan 2021
Samples	1	Date Reported	01 Feb 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

PAH (Polynuclear Aromatic Hydrocarbons) in Soll

All Data Quality Objectives were met with the exception of the following:

Duplicate Matrix Spike

VOC's in Soil

5 items

1 item

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	Client	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	1 Soil
Date documentation received	22/1/2021	Type of documentation received	COC
Number of eskies/boxes received		Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	17°C
Sufficient sample for analysis	Yes	Turnaround time requested	Standard

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SHAMAPY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 BC Alexandria NSW 2015 t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Australia

Australia

HOLDING TIME SUMMARY

SE215773 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

E-(AU)-[ENV]AN3	Method: M							Mercury In Soll
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	16 Feb 2021	28 Jan 2021	16 Feb 2021	22 Jan 2021	19 Jan 2021	LB217507	SE215773.001	BD6/20210119
E-(AL)-[ENV]ANO	Method: N							Moisture Content
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	02 Feb 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217482	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N							OC Pesticides in Soil
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N							OP Pesticides in Soli
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N						Hydrocarbons) in Soll	PAH (Polynuclear Aromatic
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N							PCBs in Soll
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N							Speciated Phenols In Soll
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
ENVJAN040/AN3	Method: ME-(AU)					arials by ICPOES	s in Soll/Waste Solids/Mai	Total Recoverable Element
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	18 Jul 2021	28 Jan 2021	18 Jul 2021	22 Jan 2021	19 Jan 2021	LB217499	SE215773.001	BD6/20210119
E-(AL)-[ENV]AN4	Method: N						drocarbons) in Soil	TRH (Total Recoverable Hy
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217481	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N							VOC's In Soll
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217480	SE215773.001	BD6/20210119
E-(AU)-[ENV]AN4	Method: N						bons in Soll	Volatile Petroleum Hydroca
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
01 Feb 2021	09 Mar 2021	28 Jan 2021	02 Feb 2021	22 Jan 2021	19 Jan 2021	LB217480	SE215773.001	BD6/20210119

SURROGATES

SE215773 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Boll				Method: Mi	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	87
OP Pasticides In Soil				Method: Mi	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	89
d14-p-terphenyl (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	93
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: Mi	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BD6/20210119	SE215773.001	%	70 - 130%	89
d14-p-terphenyl (Surrogate)	BD6/20210119	SE215773.001	%	70 - 130%	93
d5-nitrobenzene (Surrogate)	BD6/20210119	SE215773.001	%	70 - 130%	110
PCBs in Soll				Method: Mi	-(AU)-IENVIAN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	87
Speciated Phenols in Soli				Method: Mit	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2,4,6-Tribromophenol (Surrogate)	BD6/20210119	SE215773.001	%	70 - 130%	86
d5-phenol (Surrogate)	BD6/20210119	SE215773.001	%	50 - 130%	81
VOC's In Soll				Method: Mi	E-(AU)-(ENV)AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	67
d4-1,2-dichloroethane (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	83
d8-toluene (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	91
Volatille Petroleum Hydrocarbons in Soli				Method: Mi	E-(AU)-(ENV)AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	67
d4-1,2-dichloroethane (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	83
d8-toluene (Surrogate)	BD6/20210119	SE215773.001	%	60 - 130%	91

METHOD BLANKS

SE215773 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result
LB217507.001		Mercury	mg/kg	0.05	<0.05
EDZINGONIOUT		morouy	inging	0.00	
OC Pesticidas In Sol				Methy	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB217481.001				0.1	
LB217481.001		Hexachlorobenzene (HCB)	mg/kg		<0.1
		Alpha BHC	mg/kg	0.1	
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0,1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%		88
OP Pesticides In Sol		· · · · · · · · · · · · · · · · · · ·			od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB217481.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0,2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%		94
		d14-p-terphenyl (Surrogate)	%	~	92
AH (Polynuclear Ar	romatic Hydrocarbons) In Soll			Meth	d: ME-(AU)-[ENV]AN4
Sample Number			Units	LOR	Result
Contraction of the Contraction of the Contraction		Parameter			
LB217481.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
			mg/kg mg/kg	0.1 0.1	<0.1 <0.1
		Pyrene			

METHOD BLANKS

SE215773 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result
LB217481.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	92
		2-fluorobiphenyl (Surrogate)	%	+	94
		d14-p-terphenyl (Surrogate)	%		92
CBs In Soil				Moth	od: ME-(AU)-[ENV]AN
			11-34-		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Sample Number		Parameter	Units	LOR	Result
LB217481.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	88
Speciated Phenois In I	Soll			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B217481.001		Phenol	mg/kg	0.5	<0.5
		2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5
		3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1
		2-chlorophenol	mg/kg	0.5	<0.5
		2,4-dimethylphenol	mg/kg	0.5	<0.5
		2,6-dichlorophenol	mg/kg	0.5	< 0.5
		2,4-dichlorophenol	mg/kg	0.5	<0.5
		2,4,6-trichlorophenol	mg/kg	0.5	<0.5
		2-nitrophenol	mg/kg	0.5	<0.5
		4-nitrophenol	mg/kg	T	<1
		2,4,5-trichlorophenol	mg/kg	0.5	<0.5
		2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1
		Pentachlorophenol	mg/kg	0.5	<0.5
		2,4-dinitrophenol	mg/kg	2	<2
		4-chloro-3-methylphenol	mg/kg	2	<2
	Surrogates	2,4,6-Tribromophenol (Surrogate)	%		89
		d5-phenol (Surrogate)	%	-	92
atal Decouprable De	ements in Soil/Waste Solids/			Mathody ME	(AU)-[ENV]AN040/AN
and an and a second second	anierits in doirwaste doitus/				
Sample Number		Parameter	Units	LOR	Result
LB217499.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
RH (Total Recoverat	ble Hydrocarbons) in Soll			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B217481.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
OC's in Soil					od: ME-(AU)-(ENV)AA
00311001				Men	an me hasheraalan

METHOD BLANKS

SE215773 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's In Soil (continued)

VOC's In Soil (contin	ued)			Metho	d: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB217480.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%		109
		d8-toluene (Surrogate)	%	1.0	122
		Bromofluorobenzene (Surrogate)	%		108
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum H	ydrocarbons in Soli			Metho	d: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB217480.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	109

DUPLICATES

Method: ME-(AU)-[ENV]AN002

Method: ME-(AU)-[ENV]AN420

RPD %

0

0

0

D

0

n

0

0

0

0

Q

D

0

0

0

0

0

0

0

Ū.

0

0

0

0

0

0

0

Ó

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Vercury in Solf									
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE215718A.011	LB217507.019	Mercury	mg/kg	0.05	0.029012745	0.0306060606	198	0	
SE215773.001	LB217507.014	Mercury	mg/kg	0.05	<0.05	<0.05	176	0	

Moisture Content

OC Pesticides in Soll

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE215870.001	LB217482.011	% Moisture	%w/w	1	15.246636771	34.8391812865	37	3
SE215870.011	LB217482.022	% Moisture	%w/w	1	15.918367346	15.2901785714	36	4
SE215870.012	LB217482.024	% Moisture	%w/w	1	17.062634989	16.4727495407	36	4

Duplicate Criteria % Original Units LOR Dup Oriair SE215870.005 LB217481.031 Hexachlorobenzene (HCB) 0.1 0 0 200 mg/kg Alpha BHC 0.1 0 0 200 mg/kg Lindane mg/kg 0.1 0 0 200 Heptachlor 0.1 0 0 200 mg/kg Aldrin 0.1 0 0 200 mg/kg Beta BHC mg/kg 0.1 0 0 200 Delta BHC mg/kg 0.1 0 0 200 0 Heptachlor epoxide 0.1 0 200 mg/kg o.p'-DDE mg/kg 0.1 0 0 200 Alpha Endosulfan 0.2 0 0 200 mg/kg Gamma Chlordane 0.1 0 0 200 mg/kg Alpha Chlordane mg/kg 0.1 0 0 200 trans-Nonachlor 0.1 0 0 200 mg/kg p,p'-DDE 0.1 0 0 200 mg/kg Dieldrin 0.2 mg/kg 0 0 200 Endrin mg/kg 0.2 0 0 200 o,p'-DDD 0.1 0 0 200 mg/kg o.p'-DDT mg/kg 0.1 0 0 200 Beta Endosulfan 0.2 0 0 200 mg/kg p,p'-DDD 0.1 0 0 200 mg/kg 0.02399931280.0241044557 p,p'-DDT mg/kg 0.1 200 Endosulfan sulphate 0.1 0 0 200 mg/kg Endrin Aldehyde 0.1 0 0 200 mg/kg 0.0016084008 Methoxychlor mg/kg 0.1 0 200 Endrin Ketone mg/kg 0.1 0 0 200 0.1 0 200 Isodrin 0 mg/kg Mirex 0 200 mg/kg 0.1 0 Total CLP OC Pesticides mg/kg 1 0 0.0016084008 200 0.13369369720.1228423710 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg 30 SE215870.009 LB217481.028 Hexachlorobenzene (HCB) 0.1 200 mg/kg 0 0 Alpha BHC mg/kg 0.1 0 0 200 0.1 0 200 Lindane 0 mg/kg Heptachlor 0.1 0 200 mg/kg 0 Aldrin mg/kg 0.1 0 0 200 0.1 0 Beta BHC mg/kg 0 200 Delta BHC 0.1 0 200 mg/kg 0 Heptachlor epoxide mg/kg 0.1 0 0 200 0.1 0 o,p'-DDE 0 200 mg/kg 0.2 200 Alpha Endosulfan mg/kg 0 0 Gamma Chlordane mg/kg 0.1 0 0 200 0.1 0 200 Alpha Chlordane 0 mg/kg trans-Nonachlor 0.1 200 mg/kg 0 0 p,p'-DDE mg/kg 0.1 0 0 200 Dieldrin 0.2 0 200 0 mg/kg Endrin 0.2 0 200 mg/kg 0

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.2

0.1

0

0

0

0

0

0

0

0

200

200

200

200

o,p'-DDD

o,p'-DDT

p,p'-DDD

Beta Endosulfan

1/2/2021

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE215870.009	LB217481.028		p,p'-DDT	mg/kg	0.1	0	0.0141283408	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0.0011188278	0	200	0
			Endrin Ketone	mg/kg	0.1	Ō	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0.0011188278	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	4	0.1280141030	0.1272970181	30	1
OP Pesticides in S	Soll						Metho	d: ME-(AU)-	ENVIAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE215870.006	LB217481.030		Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0.0008987850	0.0038701271	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.0762789876	0	200	0
			Fenitrothion	mg/kg	0.2	0.0065010355	0	200	0
			Malathion	mg/kg	0.2	0	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0.0425072763	0	200	0
			Bromophos Ethyl	mg/kg	0.2	0	0	200	0
			Methidathion	mg/kg	0.5	0.0044812617	0	200	0
			Ethion	mg/kg	0.2	0.0151014937	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0	0	200	Ō
			Total OP Pesticides*	mg/kg	1.7	0	0	200	D
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4250796384	0.4332791757	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4197983314	0.4284916685	30	2
SE215870.009	LB217481.028		Dichlorvos	mg/kg	0.5	0.0018753432	0	200	0
			Dimethoate	mg/kg	0.5	0	0	200	D
			Diazinon (Dimpylate)	mg/kg	0.5	0	0	200	0
			Fenitrothion	mg/kg	0.2	0.0038138172	0	200	D
			Malathion	mg/kg	0.2	0	0	200	Q
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0	0.0078060569	200	Q
			Bromophos Ethyl	mg/kg	0.2	0.0891655831	0	200	0
			Methidathion	mg/kg	0.5	0	0	200	0
			Ethion	mg/kg	0.2	0	0.0360758063	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0.0012775657	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.4531698601	0.4398233860	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4405639316	0.4284214815	30	3
Contraction of the second	Arometic Hydrocarbo	and in Oall					R. Rubble	d: ME-(AU)-	CAN/IAN

Units LOR Original Duplicate Criteria % RPD % Original Parameter Duplicate SE215870.006 LB217481.030 Naphthalene mg/kg 0.1 0 0.0198512377 200 0 2-methylnaphthalene 0.1 0.00365383400.0111271261 200 0 mg/kg 0.00405524790.0108166183 200 0 0.1 1-methylnaphthalene mg/kg Acenaphthylene mg/kg 0.1 0.00579971880.0141446806 200 0 Acenaphthene 0.1 0.00526482600.0103611846 200 0 mg/kg Fluorene 0.1 0.01175821980.0232888238 200 0 mg/kg Phenanthrene mg/kg 0.1 0.08337637540.1512372476 115 41 Anthracene mg/kg 0.1 0.07803090740.0471512201 190 0 0.17888342290.3031657959 52 Fluoranthene 0.1 71 mg/kg Pyrene mg/kg 0.1 0 18523588290 2942745303 72 45 Benzo(a)anthracene 0.1 0.05220035090.0989660467 0 mg/kg 162 Chrysene 0.1 0.05602778950.1043255056 155 4 mg/kg Benzo(b&j)fluoranthene mg/kg 0.1 0.06756914340.1291174456 132 25 Benzo(k)fluoranthene mg/kg 0.1 0.03692915640.0618303938 200 0 0.1 0.07628846940.1292373379 127 26 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene 0.04639580680.0782285394 mg/kg 0.1 190 0 Dibenzo(ah)anthracene 0.1 0.00691051910.0115023065 200 0 mg/kg Benzo(ghi)perylene 0.1 0.04467548550.0801877550 190 0 mg/kg Carcinogenic PAHs, BaP TEQ <LOR=0 0.1302805930 mg/kg 0.2 0 200 Ó

DUPLICATES

Method: ME-(AU)-JENVIAM20

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (and the second se	
SE215870.006	LB217481.030		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td></td><td>0.2712805930</td><td>127</td><td>0</td></lor=lor<>	mg/kg	0.3		0.2712805930	127	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td></td><td>0.2007805930</td><td>134</td><td>0</td></lor=lor>	mg/kg	0.2		0.2007805930	134	0
			Total PAH (18)	mg/kg	0.8		0.9822404174	149	20
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg			0.5440434722	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg			0.4332791757	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-		0.4284916685	30	2
SE215870.009	LB217481.028		Naphthalene	mg/kg	0.1		0.0117404831	200	0
			2-methylnaphthalene	mg/kg	0.1		0.0074071857	200	0
			1-methylnaphthalene	mg/kg	0.1		0.0080987377	200	0
			Acenaphthylene	mg/kg	0.1		0.0076158583	200	0
			Acenaphthene	mg/kg	0.1		0.0117762063	200	0
			Fluorene	mg/kg	0.1		0.0246019232	200	0
			Phenanthrene	mg/kg	0.1		0.1655122640	70	68
			Anthracene	mg/kg	0.1	0.1073617689	0.0533286714	154	7
			Fluoranthene	mg/kg	0.1	0.7932743109	0.3747459094	47	72 @
			Pyrene	mg/kg	0.1		0.3783485697	47	71 3
			Benzo(a)anthracene	mg/kg	0.1		0.0971069308	92	77
			Chrysene	mg/kg	0.1		0.1051513341	83	89 3
			Benzo(b&j)fluoranthene	mg/kg	0.1		0.1365200893	75	78 3
			Benzo(k)fluoranthene	mg/kg	0.1		0.0653318412	133	25
			Benzo(a)pyrene	mg/kg	0.1		0.1393651410	77	68
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1		0.0784773652	111	50
			Dibenzo(ah)anthracene	mg/kg	0.1	0.0319652875	0.0119736711	200	0
			Benzo(ghi)perylene	mg/kg	0.1		0.0755555065	113	49
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td></td><td>0.1404166543</td><td>88</td><td>60</td></lor=0<>	mg/kg	0.2		0.1404166543	88	60
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td></td><td>0.2814166543</td><td>90</td><td>44</td></lor=lor<>	mg/kg	0.3		0.2814166543	90	44
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td></td><td>0.2109166543</td><td>73</td><td>66</td></lor=lor>	mg/kg	0.2		0.2109166543	73	66
			Total PAH (18)	mg/kg	0.8		1.1631232183	64	102 @
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-		0.5540397505	30	3
			2-fluorobiphenyl (Surrogate)	mg/kg	-		0.4398233860	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4405639316	0.4284214815	30	3
CBs in Soll							Method	: ME-(AU)	-[ENVIAN
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD
E215870.005	LB217481.031		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	O	0	200	Q
			Arochlor 1254	mg/kg	0.2	0	0	200	a
			Arochlor 1260	mg/kg	0.2	0.0128232033	0	200	Q
			Arochlor 1262	mg/kg	0.2	0	0	200	0.
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0.0128232033	0	200	D
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-		0.1228423710	30	8
E215870.009	LB217481.028		Arochlor 1016	mg/kg	0.2	0	0	200	0
and an an an an an	and the second se		Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	Ō	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	Û
				mg/kg	0.2	0	0	200	0
			AFOCHIOF 1254						D
			Arochlor 1254 Arochlor 1260		0.2	0.0149096333	0.0234599868	200	
			Arochlor 1260	mg/kg	0.2		0.0234599868	200 200	
			Arochlor 1260 Arochlor 1262	mg/kg mg/kg	0.2	0	0	200	Q
			Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg	0.2 0.2	0	0 0	200 200	0
		Surronates	Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors)	mg/kg mg/kg mg/kg mg/kg	0.2	0 0 0.0149096333	0 0 0.0234599868	200 200 200	Q
	e Elements in Soll/We	Surrogates	Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg	0.2 0.2 1	0 0 0.0149096333 0.1280141030	0 0 0.0234599868	200 200 200 30	0 0 1

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE215718A.011	LB217499.019		Arsenic, As	mg/kg	1		51.1276942148	132	12
3L213/10A.011	LD217435.015		Cadmium, Cd		0.3		0.0020867768	200	0
			Chromium, Cr	mg/kg	0.5			51	5
				mg/kg			32.4770041322	36	
			Copper, Cu	mg/kg	0.5		08.2043719008		2
			Nickel, Ni	mg/kg	0.5		0.8839586776	89	7
			Lead, Pb	mg/kg	1		56.1902148760	46	3
A CONTRACTOR OF THE OWNER OF THE	The second s		Zinc, Zn	mg/kg	2		7.6935289256	56	4
SE215773.001	LB217499.014		Arsenic, As	mg/kg	1	6	6	47	3
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	13	15	34	10
			Copper, Cu	mg/kg	0.5	18	18	33	1
			Nickel, Ni	mg/kg	0.5	7.5	7.5	37	1
			Lead, Pb	mg/kg	1	32	33	33	4
			Zinc, Zn	mg/kg	2	53	54	34	1
RH (Total Recov	erable Hydrocarbons) In Soll					Method	ME-(AU)-	ENVIANA
			Bernetter	11-8-	LOR	Original			
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE215870.006	LB217481.030		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	mg/kg	45	0	0	200	0
			TRH C29-C36	mg/kg	45	0	0	200	0
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	0	0	200	Ó
		TRH F Bands	TRH >C10-C16	mg/kg	25	0	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	D
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	Q
SE215870.009	LB217481.028		TRH C10-C14	mg/kg	20	0	0	200	D
			TRH C15-C28	mg/kg	45	0	0	200	Q
			TRH C29-C36	mg/kg	45	0	0	200	D.
			TRH C37-C40	mg/kg	100	Ö	0	200	O
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16		210	0	0	200	0
		IRN F Danus		mg/kg					
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
OC's in Soll							Method	: ME-(AU)-	ENVIANA
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate (Criteria %	RPD %
SE215870.006	LB217480.014	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1		0.0041403984	200	0
		e o contettic	Ethylbenzene	mg/kg	0.1		0.0041403984	200	0
					0.1		0.0016004093 0.0030971507	200	0
			m/p-xylene	mg/kg					
			o-xylene	mg/kg	0.1		30.0009035786	200	0
		Polycyclic	Naphthalene	mg/kg	0.1		30.0020668224	200	D
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-		38.3295910193	50	20
			d8-toluene (Surrogate)	mg/kg			49.1152969537	50	20
			Bromofluorobenzene (Surrogate)	mg/kg	-		36.6569964138	50	20
		Totals	Total Xylenes	mg/kg	0.3	0.0045841070	0.0040007294	200	D
			Total BTEX	mg/kg	0.6	0	0	200	0
SE215870.010	LB217480.019	Monocyclic	Benzene	mg/kg	0.1	0	0	200	D
		Aromatic	Toluene	mg/kg	0.1	0.0040166662	20.0039552503	200	0
			Ethylbenzene	mg/kg	0.1	0.0014606214	0.0014335810	200	0
			m/p-xylene	mg/kg	0.2	0.0030212570	0.0029739994	200	0
			o-xylene	mg/kg	0.1		0.0008509228	200	0
		Polycyclic	Naphthalene	mg/kg	0.1		20.0018212758	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-		29.3800307901	50	0
		- an against	d8-toluene (Surrogate)	mg/kg	-		710.3091391495	50	T
			Bromofluorobenzene (Surrogate)	mg/kg	-		27.6084561216	50	0
		Totals							0
		Totals	Total Xylenes Total BTEX	mg/kg mg/kg	0.3	0.0039395376	0.0038249222 0	200 200	0

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Volatile Petroleum Hydrocarbons in Soll

volanie Lettolenin	Hydrocarbons in Sol						Menk	od: ME-(AU)-	SCIRA Malaka
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE215870.006	LB217480.014		TRH C6-C10	mg/kg	25	0	0	200	0
			TRH C6-C9	mg/kg	20	0	0	200	Ō
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		10.129867730	8.3295910193	30	20
			d8-toluene (Surrogate)	mg/kg	-	11.101075119	49.1152969537	30	20
			Bromofluorobenzene (Surrogate)	mg/kg	4.1	8.150296435	36.6569964138	30	20
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	0	0	200	0
SE215870.010	LB217480.019		TRH C6-C10	mg/kg	25	0	0	200	0
			TRH C6-C9	mg/kg	20	0	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		9.403364122	29.3800307901	30	0
			d8-toluene (Surrogate)	mg/kg		10.166197285	70.3091391493	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	+	7.592921875	27.6084561216	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	0	0	200	Ø

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll						U)-[ENV]AN312	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217507.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	99

	Soll							U)-[ENV]AN42
Sample Numbe	ər	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217481.002		Heptachlor	mg/kg	0.1	0.1	0.2	60 - 140	70
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	68
		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	69
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	73
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	74
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	74
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.11	0.15	40 - 130	76
OP Pesticides in	Soll					1	Nethod: ME-(Al	U)-[ENV]AN42
Sample Numbe	∍r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217481.002		Dichlorvos	mg/kg	0.5	2.6	2	60 - 140	130
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	98
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	91
		Ethion	mg/kg	0.2	1.8	2	60 - 140	91
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	(#)	0.5	0.5	40 - 130	92
	ourrogatos	J. (J)						
	ounogatos	d14-p-terphenyl (Surrogate)	mg/kg	1.71	0.4	0.5	40 - 130	86
PAH (Polynuclea	r Aromatic Hydroca	d14-p-terphenyl (Surrogate)			0.4		40 - 130 Nethod: ME-(Al	
PAH (Polynuclea Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate)		LOR	0.4 Result			
4.1.4	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil	mg/kg			1	Vethod: ME-(Al	U)-[ENV]AN42
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter	mg/kg Units	LOR	Result	Expected	Nethod: ME-(Al Criteria %	U)-[ENV]AN42 Recovery %
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene	mg/kg Units mg/kg	LOR 0.1	Result 3.8	Expected 4	Method: ME-(Al Criteria % 60 - 140	U)-[ENV]AN42 Recovery % 94
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	Result 3.8 3.8	Expected 4 4	Method: ME-(Al Criteria % 60 - 140 60 - 140	U)-[ENV]AN420 Recovery % 94 96
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 3.8 3.8 4.1	Expected 4 4 4	Method: ME-(AU Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN420 Recovery % 94 96 101
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8	Expected 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN420 Recovery % 94 96 101 95
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7	Expected 4 4 4 4 4 4	Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN420 Recovery % 94 96 101 95 93
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7	Expected 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-(ENV)AN424 Recovery % 94 96 101 95 93 92
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7 4.0	Expected 4 4 4 4 4 4 4 4 4	Anthod: ME-(Al Criteria % 60 - 140 60 - 140	Recovery % 94 96 101 95 93 92 100
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7 4.0 4.4	Expected 4 4 4 4 4 4 4 4 4 4 4	Alethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 94 96 101 95 93 92 100 110
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7 4.0 4.4 0.5	Expected 4 4 4 4 4 4 4 4 4 4 4 0.5	Alethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 94 96 101 95 93 92 100 110 110 90
Sample Numbe	r Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7 4.0 4.4 0.5 0.5	Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Alethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AM420 Recovery % 94 96 101 95 93 92 100 110 90 92 86
Sample Numbe	a Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.8 3.8 4.1 3.8 3.7 3.7 4.0 4.4 0.5 0.5	Expected 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Alethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 40 - 130 40 - 130 40 - 130	U)-[ENV]AM420 Recovery % 94 96 101 95 93 92 100 110 90 92 86

Speciated Phenois in Soli Method: ME-(AU)-[ENV]AN420 Sample Number Parameter Units LOR Criteria % Resi Recovery % LB217481.002 0.5 0.9 70 - 130 Phenol mg/kg 92 1 2,4-dichlorophenol mg/kg 0.5 0.8 70 - 130 84 1 0.5 0.8 70 - 130 84 2,4,6-trichlorophenol mg/kg 1 0.7 70 - 130 72 Pentachlorophenol 0.5 mg/kg 1 Surrogates 2,4,6-Tribromophenol (Surrogate) mg/kg 4.6 5 40 - 130 91 2 40 - 130 92 d5-phenol (Surrogate) mg/kg 1.8 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units Result Expected Criteria % Recovery % LB217499.002 Arsenic, As mg/kg 1 330 318.22 80 - 120 105 Cadmium, Cd 0.3 5.0 5.41 80 - 120 93 mg/kg Chromium, Cr mg/kg 05 38 38.31 80 - 120 100 Copper, Cu mg/kg 0.5 300 290 80 - 120 105 Nickel, Ni 0.5 190 187 80 - 120 99 mg/kg 93 Lead, Pb mg/kg 1 89.9 80 - 120 103 Zinc, Zn mg/kg 2 270 273 80 - 120 100 TRH (Total Recoverable Hydrocarbons) in Soli Method: ME-(AU)-[ENV]AN403 LOR Sample Number Paramete Units

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217481.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	85
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	73
	TRH F Bands	TRH >C10-C16	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	80
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	75
VOC's In Soll							Nethod: ME-(A	U)-[ENV]AN433
Sample Numbe	ŕ	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217480.002	Monocyclic	Benzene	mg/kg	0.1	4.1	5	60 - 140	82
	Aromatic	Toluene	mg/kg	0.1	4.2	5	60 - 140	83
		Ethylbenzene	mg/kg	0.1	4.0	5	60 - 140	80
		m/p-xylene	mg/kg	0.2	8.0	10	60 - 140	80
		o-xylene	mg/kg	0.1	4.0	5	60 - 140	81
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10	70 - 130	104
		d8-toluene (Surrogate)	mg/kg	-	11.6	10	70 - 130	116
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
Volatile Patrolaun	Hydrocarbons in S	soll					Vethod: ME-(A	U)-JENVJAN43
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB217480.002		TRH C6-C10	mg/kg	25	81	92.5	60 - 140	87
		TRH C6-C9	mg/kg	20	71	80	60 - 140	88
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10	70 - 130	104
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	57	62.5	60 - 140	90

MATRIX SPIKES

SE215773 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref. MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Aarcury in Soll						Met	iod: ME-(AL	J)-[ENVIAN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217507.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	89

QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217481.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	opine	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1		
			Lindane	mg/kg	0.1	<0.1	<0.1	~	
			Heptachlor	mg/kg	0.1	0.1	<0.1	0.2	66
			Aldrin	mg/kg	0.1	0.1	<0.1	0.2	64
			Beta BHC	mg/kg	0.1	<0.1	<0.1		
			Delta BHC	mg/kg	0.1	0.1	<0.1	0.2	65
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	+	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	1
			Alpha Endosuifan	mg/kg	0.2	<0.2	<0.2		~
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	~	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1		1.2
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1		-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1		
			Dieldrin		0.1	<0.2	<0.2	0.2	69
			Endrin	mg/kg mg/kg	0.2	<0.2	<0.2	0.2	70
			o,p'-DDD		0.2	<0.2	<0.2	0.2	70
				mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg		<0.1			
			Beta Endosulfan	mg/kg	0.2		<0.2	-	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.1	<0.1	0.2	62
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1		
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	e	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	~	
			Isodrin	mg/kg	0.1	<0.1	<0.1		~
			Mirex	mg/kg	0.1	<0.1	<0.1	÷	4
			Total CLP OC Pesticides	mg/kg	1	<1	<1	- 2	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	÷	0.11	0.12	. 8	77
OP Pesticidas In	Soll						Meth	hod: ME-(AU)	- (ENVIAN42)
QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217481.004		Dichlorvos	mg/kg	0.5	2.3	<0.5	2	115
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.3	<0.5	2	116
									*
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	
			Fenitrothion Malathion	mg/kg mg/kg	0.2	<0.2 <0.2	<0.2 <0.2	2	-
			Malathion	mg/kg	0.2		<0.2	2	112
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg		<0.2			112
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion)	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 2.2 <0.2	<0.2 <0.2 <0.2	2	
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 2.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2	2	
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.5	<0.2 2.2 <0.2 <0.2 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.5	2	*
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.5 0.5	<0.2 2.2 <0.2 <0.2 <0.5 1.8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.2	2	-
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2	2	-
		Surrorates	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.5 0.5	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7	2	90
		Surrogates	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4	2	- 90 - 88
			Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5	2 - - 2 - -	- 90 - 88 83
10 31	ar Aromatic Hydrocar	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil	2 	90
QC Sample	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 - - -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 Result	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil Original	2 - - - - - - - - - - - - - - - - - - -	- 90 - 88 83 - - - 83
QC Sample	200 T 100 T 7 3	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil	2 	90 - - 88 83
QC Sample	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 - - -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 Result	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil Original	2 - - - - - - - - - - - - - - - - - - -	- 90 - 88 83 - - - 88 83 - - - - - - - - - -
QC Sample	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 - - - - - - - - - - - - - - - - - - -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 Result 4.4	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil Original <0.1	2 - - 2 - - - - - - - - - - - - - - - -	- - - - - - 88 83 - - - - - - - - - - -
QC Sample	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Gurrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 - - - - - - - - - - - - - - - - - - -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 .4 4.4 <0.1	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <0.2 <1.7 0.4 0.5 Meil Original <0.1 <0.1	2 - - - - - - - - - - - - - - - - - - -	- 90 - - 88 83 • [ENV]AN42 Recovery? 109
QC Sample	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Gurrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 - - - - - - - - - - - - - - - - - - -	<0.2 2.2 <0.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 0.4 Result 4.4 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <1.7 0.4 0.5 Meit Original <0.1 <0.1 <0.1 <0.1	2 - - - - - - - - - - - - - - - - - - -	- 90 - 88 83 • ENVJAN22 Recovery% 109 -
PAH (Polynucle QC Sample SE215752.001	Sample Number	oons) in Soli	Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Gurrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.5 0.2 0.2 1.7 - - - - - - - - - - - - - - - - - - -	<0.2 2.2 <0.2 <0.5 1.8 <0.2 8.7 0.4 0.4 0.4 Result 4.4 <0.1 <0.1 4.3	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.2 <1.7 0.4 0.5 Methematical Coriginal <0.1 <0.1 <0.1 <0.1 <0.1	2 - - - - - - - - - - - - - - - - - - -	- 90 - 88 83 • ENVJAN22 Recovery% 109 - 108

MATRIX SPIKES

SE215773 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

LET ALLERGE CORD	ar Aromatic Hydrocarb	and the second factor in		10000	1000			2.2.2.2.2.1.2.1.2.4	-[ENVIAN42
QC Sample	Sample Number	1.000	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217481.004		Anthracene	mg/kg	0.1	4.2	<0.1	4	104
			Fluoranthene	mg/kg	0.1	4.2	<0.1	4	106
			Pyrene	mg/kg	0.1	4.2	<0.1	4	105
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	(÷	1
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	10	~
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1		
			Benzo(a)pyrene	mg/kg	0.1	4.2	<0.1	4	105
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1		-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1		
			Benzo(ghi)perylene		0.1	<0.1	<0.1	-	
				mg/kg					-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.2</td><td><0.2</td><td></td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.2	<0.2		-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.4</td><td><0.3</td><td>~</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.4	<0.3	~	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td><0.2</td><td>1.00</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.3	<0.2	1.00	-
			Total PAH (18)	mg/kg	0.8	34	<0.8	1-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5	0.6	÷.	109
			2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.4	-	88
			d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.5	64	83
PCBs in Soll							Mail	ANT ME TALL	ENVJAN42
			A SHARE AND A S		11.6.10				
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery?
SE215752.001	LB217481.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	+	
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	~
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	÷
			Arochior 1248	mg/kg	0.2	<0.2	<0.2		
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.5	<0.2	0.4	120
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2		120
			Arochior 1268		0.2	<0.2	<0.2	-	-
				mg/kg					
		-	Total PCBs (Arochlors)	mg/kg	1	<1	<1	14	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	÷ .	0	0	-	77
Total Recoverab	le Elements in SolWV	aste Solids/Materi	tals by ICPOES				Method: ME	(AU)-TENV	AN040/AN320
QC Sample	Sample Number	-	Parameter	Units	LOR	Result	Original	Spîke	Recovery%
SE215752.001	LB217499.004		Arsenic, As	mg/kg	1	44	2	50	85
OLL IOTOL.OUT	LDL II IOUIOUI		Cadmium, Cd	mg/kg	0.3	43	<0.3	50	85
			Chromium, Cr		0.5	51	9.1	50	85
				mg/kg					
			Copper, Cu	mg/kg	0.5	45	2.7	50	85
			Nickel, Ni	mg/kg	0.5	50	14	50	71
			Lead, Pb	mg/kg	1	48	7	50	82
			Zinc, Zn	mg/kg	2	68	31	50	73
TRH (Total Reco	verable Hydrocarbon	s) In Soll					Met	hod: ME-IAU	ENVIAN40
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
							<20		98
SE215752.001	LB217481.004		TRH C10-C14	mg/kg	20	39		40	
			TRH C15-C28	mg/kg	45	<45	<45	40	98
			TRH C29-C36	mg/kg	45	<45	<45	40	85
			TRH C37-C40	mg/kg	100	<100	<100		
			TRH C10-C36 Total	mg/kg	110	<110	<110	100	÷.
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210		+
		TRH F Bands	TRH >C10-C16	mg/kg	25	39	<25	40	98
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	35	<25		*
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	95
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	
in the second				myrky	120	-120			
VOC's in Soil							Meti	nod: ME-(AU	-(ENVJAM33
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217480.004	Monocyclic	Benzene	mg/kg	0.1	3.2	<0.1	5	64
		Aromatic	Toluene	mg/kg	0.1	3.3	<0.1	5	65
			Ethylbenzene	mg/kg	0.1	3.3	<0.1	5	66
				ng/ng	U. I	0.0	-u. I	9	00
					0.2	67		10	67
			m/p-xylene o-xylene	mg/kg mg/kg	0.2 0.1	6.7 3.4	<0.2 <0.1	10 5	67 67

MATRIX SPIKES

SE215773 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No. of Concession, Name				11.2	10100		and the second	202120	- Conception and The
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217480.004	Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	~~	*
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	(÷	7.9	9.5	10	79
			d8-toluene (Surrogate)	mg/kg	-	8.5	9.2	10	85
			Bromofluorobenzene (Surrogate)	mg/kg	÷	6.0	11.0	10	60 ①
		Totals	Total Xylenes	mg/kg	0.3	10	<0.3		-
			Total BTEX	mg/kg	0.6	20	<0.6	÷	~
Volatile Petroleu	m Hydrocarbons in So	Ik					Meth	nod: ME-(AL	J)-[ENV]AN433
QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE215752.001	LB217480.004		TRH C6-C10	mg/kg	25	59	<25	92.5	64
			TRH C6-C9	mg/kg	20	53	<20	80	66
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	ie.	7.9	9.5	10	79
			d8-toluene (Surrogate)	mg/kg	ė	8.5	9.2	10	85
			Bromofluorobenzene (Surrogate)	mg/kg		6.0	11.0	÷.	60
		VPH F	Benzene (F0)	mg/kg	0.1	3.2	<0.1	~	

MATRIX SPIKE DUPLICATES

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

FOOTNOTES

SE215773 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- IOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Douglas Partners

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		99872.01 Suburb: West Ryde								To: Envirolab Services Pty Ltd								
Project Name:			len High Sc	hool		Order Number				12 Ashley Street, Chatswood, NSW 2067								
Project Manager: Lisa Teng												Attn: Aileen Hie						
Emails: .isa.Teng@douglaspartners.com.a											Phone:				and the second sec			
Date Required											Email:	Ahi	e@envir	olab.com	i.au			
Prior Storage:	Fridge	/freeze	r			Do sam	ples contair	n 'potentia	al' HBM?	No 🗆	(If YES, then	handle, tra	ansport and	store in acc	ordance with FPM HAZID)			
			pled	Sample Type	Container Type		Analytes											
	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	COMBO 8A	COMBO 3A	COMBO 3	pH and CEC	plod	TRH BTEX	Combo 8	Pel	inqui'sh	Notes/preservation led by EN SUC (Malem			
BH16	0-0.1	30	19/01/21	S	G	x									22/12/200			
BH16 (0.9-1.0	31	19/01/21	S	G					х					an			
BH17 (0.4-0.5	35	19/01/21	S	G	X			1 1		and a							
BH18	0-0.1	33	19/01/21	S	G		×		SGS EHS	10 Mar 10				0	Eucirolab Services			
BH19 (0.4-0.5	34	18/01/21	S	G	Х	1		SE21	1577	3			ENVIROL	B 12 Ashley St Chatswood NSW 2067			
BH19	1.4-1.5	32	18/01/21	S	G			1						Job No	Ph: (02) 9910 6200			
BH20	0-0.1	36	18/01/21	S	G	х							1.1.2		20039			
BH21	0-0.1	37	19/01/21	S	G	Х								Date Re Time Re	ceived ILSUN			
BH22 (0.4-0.5	38	18/01/21	S	G		x		1		1			Receive	By: VE IO PU			
BH23	0.4-0.5	39	19/01/21	S	G		×							Cooling:	concepack)			
BD1/20210118	-	40	18/01/21	S	G			1				x		Security:	Intact/Broken/None			
BD10/20210119	-	41	19/01/21	S	G			x										
BD2/20210118	-	42	18/01/21	S	G			x		-				1				
BD6/20210119	-		19/01/21	S	G					_		x			SEND AS INTERLAB TO SGS			
Trip Spike		43	18-19/01/21	S	G						x							
PQL (S) mg/k	_										-		ANZEG	CC PQLs	req'd for all water analytes			
PQL = practica					, default to	Laborat	ory Metho	d Detect	tion Limit		Lab R	eport/Re	ference	No:				
Metals to Anal Total number	lyse: 8H	M unle	ss specifie	d here:	Poli	nquishe	d but		Transpor	rtad to I	aboratory							
Send Results			uglas Partne	ers Ptv I			u by.	-	Transpor	ried to I	aboratory	by:	Phone		Fax:			
Signed:		00	agino i unin	olor y L	Received		-	Fair	Valat	1.5	- 1	Date &		11.1	Гал. Э.			

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	6	LABORATORY DETA	MLS	_
Contact	Lisa Teng	Manager	Huong Crawford	
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	96 Hermitage Road West Ryde NSW 2114	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Talephone	02 9809 0666	Telephone	+61 2 8594 0400	
Facsimile	02 9809 4095	Facsimila	+61 2 8594 0499	
Email	lisa.teng@douglaspartners.com.au	Email	au.environmental.sydney@sgs.com	
Project	99872.01 Marsden High School	Samples Received	Fri 22/1/2021	
Order Number	(Not specified)	Report Due	Mon 1/2/2021	
Samples	1	SGS Reference	SE215773	

_ SUBMISSION DETAILS

This is to confirm that 1 sample was received on Friday 22/1/2021. Results are expected to be ready by COB Monday 1/2/2021. Please quote SGS reference SE215773 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	Client	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	1 Soil
Date documentation received	22/1/2021	Type of documentation received	COC
Number of eskies/boxes received		Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	17°C
Sufficient sample for analysis	Yes	Turnaround time requested	Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-ano-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

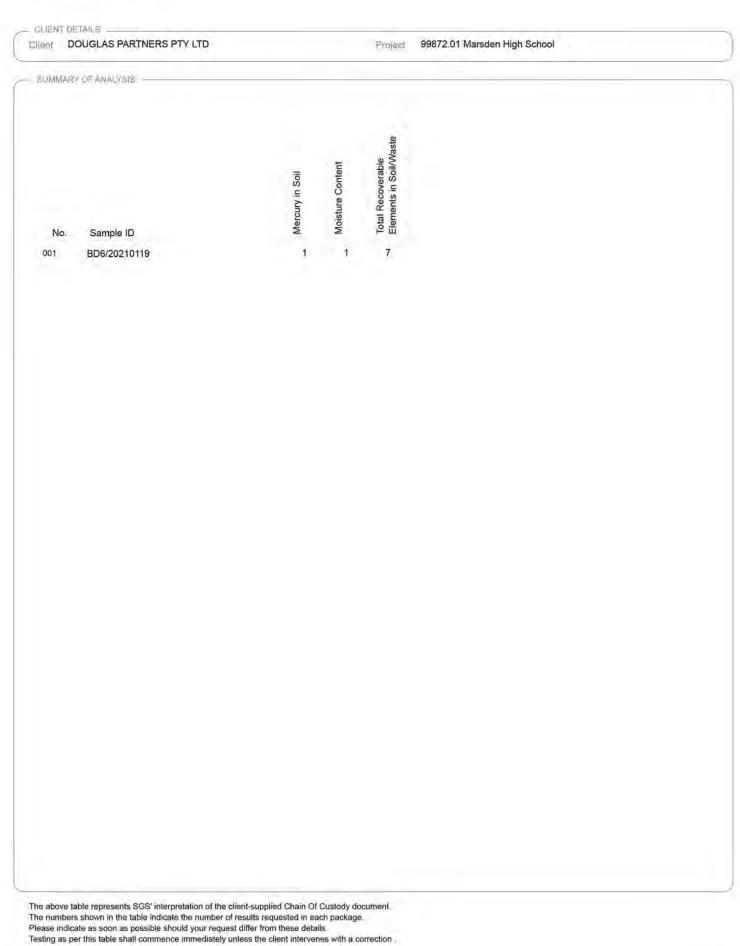
SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

SE215773


LIENT DETAILS			Project	99872	2.01 Marsd	len High S	chool		
SUMMARY OF ANALYSIS									
No. Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Speciated Phenols in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil	
001 BD6/20210119	29	14	26	11	18	10	11	7	
									MITINUED OVERLEA

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details. Testing as per this table shall commence immediately unless the client intervenes with a correction.

SAMPLE RECEIPT ADVICE

SE215773

22/01/2021