Lifestyle and opportunity
@ your doorstep

Meeting Date: Tuesday 22 November 2022
Location: Council Chambers, Level 1A, 1 Pope Street, Ryde and Online
Time:
6.00pm

ATTACHMENTS FOR COUNCIL MEETING

Item

> POST EXHIBITION REPORT - PLANNING PROPOSAL TO REZONE LAND AT 22 WINBOURNE STREET, WEST RYDE FROM SP2 (EDUCATIONAL ESTABLISHMENT) TO PART RE1 PUBLIC RECREATION AND PART C2 ENVIRONMENTAL CONSERVATION

Attachment 6 Additional Info - TIA Planning Proposal - 14
September 2022

22 Winbourne Street, West Ryde

Planning Proposal - Traffic Impact Assessment

CBRE Project Management
14 September 2022

Gold Coast
Suite 26, 58 Riverwalk Avenue
Robina QLD 4226
P: (07) 55625377

W: www.bitziosconsulting.com.au

Brisbane
Level 2, 428 Upper Edward Street
Spring Hill QLD 4000
P: (07) 38314442

Sydney
Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 95576202

E: admin@bitziosconsulting.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

Document Issue History

Report File Name	Prepared	Reviewed	Issued	Date	Issued to
P5556.001 22 Winbourne Street TIA_DRAFT	A.Packer	A.Eke	A.Eke	$25 / 03 / 2022$	Nicholas Lawler, Nicholas.lawler@cbre.com
P5556.002 22 Winbourne Street TIA	A.Packer	A.Eke	A.Packer	$30 / 03 / 2022$	Nicholas Lawler, Nicholas.lawler@cbre.com
P5556.003 22 Winbourne Street TIA	A.Packer	A.Eke	A.Packer	$30 / 03 / 2022$	Nicholas Lawler, Nicholas.lawler@cbre.com
P5556.004 22 Winbourne Street TIA	J. Imai	A.Eke	J. Imai	$14 / 09 / 2022$	Josh Johnston josh.johnston@cbre.com

CONTENTS

Page

1. InTRODUCTION 1
1.1 Background 1
1.1.1 Purpose of Report1
1.1.2 Project History 1
1.1.3 Transport Assessment Chronology of Events 1
1.2 Scope 2
2. Existing Conditions 3
2.1 Existing Site 3
2.2 Surrounding Road Network 3
2.3 Existing Traffic Operations and Observations 4
2.3.1 Overview 4
2.3.2 Network Peak Hours 5
2.3.3 Existing Site Peak 5
2.3.4 Winbourne Street Observations and Issues 5
2.3.5 Marsden Road Observations and Issues 7
2.3.6 Brush Road Observations and Issues 7
2.3.7 Existing Traffic Operations Summary 9
2.4 Existing Parking Operations 9
2.4.1 Overview 9
2.4.2 Background Parking Conditions 10
2.5 Public Transport 12
2.6 Active Transport 13
2.6.1 Pedestrian Facilities 13
2.6.2 Cycling Facilities 14
3. Planning Proposal's Transport and Operational Considerations 15
3.1 Overview 15
3.2 Indicative Proposed Future Development Components 15
3.3 Proposed Site Operations and Benchmarking 15
3.3.1 Overview 15
3.3.2 Potential Operational Scenarios 16
3.3.3 Similar Sites 17
3.3.4 Typical Daily and Weekly Usage Profiles 17
3.3.5 Court Occupancy 18
3.3.6 Expected Peak Hours 22
3.3.7 Persons Per Court 22
3.3.8 Typical Length of Games 22
3.4 Summary of Findings 23
4. Traffic Assessment 24
4.1 Assessment Context 24
4.2 Assessment Area 24
4.3 Traffic Demands 24
4.4 Background Traffic 25
4.5 Melrose Park Development Traffic 25
4.6 Development Traffic Generation 25
4.6.1 Vehicle Occupancy 25
4.6.2 Mode Share 26
4.6.3 Trip Rate per Court 26
4.6.4 Traffic Splits 26
4.7 Traffic Distribution and Assignment 27
4.8 Intersection Assessment 27
4.8.1 Future Intersection Upgrades 27
4.8.2 Intersection 1 - Victoria Road / Marsden Road Intersection 27
4.8.3 Intersection 2 - Marsden Road / Winbourne Street Intersection 29
4.8.4 Intersection 3 - Victoria Road / Brush Road Intersection 31
4.9 Capacity Assessment - Winbourne St and Brush Rd 32
4.10 Summary of Traffic Impacts 32
5. CAR PARKING Assessment 34
5.1 Car Parking Requirement and Provision 34
5.2 Behavioural Factors Influencing External Parking Usage 35
5.3 General Car Park Design Recommendations 35
6. Alternative Transport Assessment 36
6.1 Pedestrian Access and Facilities Assessment 36
6.1.1 Pedestrian Access and Facility Recommendations 36
6.1.2 On Site Pedestrian Facilities Requirements 37
6.1.3 On Site General Design Recommendations 37
6.2 Bicycle Access and Parking 37
6.2.1 Bicycle Access Assessment 37
6.2.2 Bicycle Access Recommendations 37
6.2.3 On Site Bicycle Facilities Requirements 37
6.3 Public Transport Assessment 38
6.3.1 Public Bus Facilities 38
6.3.2 Private Bus / Coach Facilities 38
6.4 Green Travel Planning 38
7. Larger Scale Events and Travel Demand Management 39
7.1 Overview 39
7.2 Event Traffic and Parking Management Strategies 39
8. SUMMARY AND CONCLUSION 40

Tables
Table 2.1: Surrounding Road Network Hierarchy
Table 2.2: Key Intersections
Table 2.3: Bus Routes and Frequencies
Table 3.1: Benchmarking Sites and Use Profiles
Table 3.2: Court Occupancy for Various Scenarios
Table 3.3: Persons Per Court
Table 4.1: \quad Calculation of Trip Rate per Court
Table 4.2: Development Traffic Splits
Table 4.3: Victoria Road / Marsden Road SIDRA Results Summary
Table 4.4: Marsden Road / Winbourne Street SIDRA Results Summary
Table 4.5: Victoria Road / Brush Road SIDRA Results Summary
Table 4.6: Road Capacity Assessment
Table 5.1: Parking Rates from Similar Sites

Figures

Figure 2.1: Subject Site Location
Figure 2.2: Surrounding Key Intersections
Figure 2.3: Winbourne Street Two-way Hourly Traffic Volumes
Figure 2.4: Winbourne Street (Southbound) Observations - Utilisation of Bus Facility for Pick Up (3:04pm on 9 March 2022)
Figure 2.5: Marsden Road (Southbound) Observations - Queueing at Victoria Road Intersection (3:05pm on 9 March 2022)
Figure 2.6: Brush Road Two-way Hourly Traffic Volumes
Figure 2.7: Brush Road (Northbound) Observations - Constrained Road Width (3:00pm on March 9, 2022)
Figure 2.8: On-street Parking Available in Proximity to the Subject Site
Figure 2.9: Winbourne Street (Southbound) On-street Parking Utilisation for School Pickup (3:05pm on 9 March 2022)
Figure 2.10: Brush Road (Northbound) On-street Parking Utilisation for School Pickup (3:00pm on 9 March 2022)

Figure 2.11: Key Bus Routes in Proximity to the Subject Site
Figure 2.12: Walking Catchment Map
Figure 2.13: Key Cycling Routes
Figure 3.1: Scenario 1 Example (Weekday) - Eastwood Ryde Netball Association (Meadowbank Park)
Figure 3.2: Scenario 1 (Weekend) Example - Sutherland Shire Netball Association (Bellingara Netball Courts Centre)
Figure 3.3: Scenario 2 Example (Weekend) - Eastwood Ryde Netball Association
Figure 4.1: Intersection 1: Victoria Road / Marsden Road Future SIDRA Layout
Figure 4.3: Marsden Road / Winbourne Street Future SIDRA Layout
Figure 4.4: Intersection 2: Victoria Road / Brush Road SIDRA Layout
Figure 6.1: Pedestrian Desire Lines and Existing Crossings

Appendices

Appendix A: Council RFI and Responses
Appendix B: Traffic Volume Data
Appendix C: Forecast 2024 \& 2034 Traffic Volumes
Appendix D: Development Traffic Distribution and Volumes
Appendix E: Design Case Traffic Volumes
Appendix F: SIDRA Modelling Outputs

1. Introduction

1.1 Background

1.1.1 Purpose of Report

This report provides a supplementary traffic impact assessment (TIA) to address Council's RFI and complete their assessment of the Planning Proposal.

1.1.2 Project History

Below outlines a summary of the project history relating to the Planning Proposal application:

- A Planning Proposal was lodged with City of Ryde Council (CoRC) on 4 June 2021 seeking Council support for rezoning of the existing Marsden High School site from SP2 Infrastructure to part RE1 Public Recreation and part C2 Environmental Conservation (now known as C2 Environmental Conservation).
- A pre-DA meeting was held on 15 July 2021 concurrent to the Planning Proposal (PP) submission, resulting in details of the proposed concept design for the facility being provided to Council, in an effort to streamline the various statutory planning pathways.
- CoRC issued a Request for Information (RFI) \#1 on 16 July 2021 in relation to traffic and parking issues
- CoRC issued a Request for Information (RFI) \#2 on 11 November 2021 in relation to traffic and parking issues.

1.1.3 Transport Assessment Chronology of Events

Prior to the preparation of this assessment, the following transport assessment items have been undertaken (in chronological order):

- SCT Consulting completed a Rapid Transport Assessment for the proposal to inform the project team (16 February 2021). The RTA reviewed the transport components and considerations to support the development and helped inform the planning proposal.
- As part of the PP application, SCT Consulting completed a Traffic Impact Assessment (TIA) in March 2021. This was submitted with the PP on 4 June 2021.
- Council responded to the TIA (16 July 2021) with a request for further information (RFI). The RFI outlined the following concerns regarding the SCT Consulting TIA:
- The traffic generation was based on survey results from 2009, raising concerns about its suitability to accurately represent current operation
- There is a lack of clarity on the likely operational characteristics of the indoor netball courts
- Traffic modelling was requested to provide details of the expected impacts of the development on the road network during the weekday evening peak (5PM - 6 PM) and Saturday midday peak (12PM - 1PM).
- The parking impacts to the surrounding streets were not well documented or justified. A detailed assessment of off-street car parking provision necessary to support the development should be provided.
- SCT Consulting provided a response to Council's RFI on 14 September 2021.
- Council issued a further RFI (\#2) on 11 November 2021. The RFI outlined a series of concerns regarding the traffic assessment assumptions as summarised below:
- The information provided to date did not provide assurance about the level of traffic and parking impact resulting from the rezoning of the land
- The impact of overflow parking resulting from the proposed facility is underestimated as the proposed parking rates provided are lower than the rates specified in the Development Control Plan
- The traffic surveys that were supporting the traffic analysis were undertaken in February 2021 during Covid-19 restrictions, and were shown to represent lower than usual traffic volumes when compared to SCATS data from 2019. The traffic surveys were not considered to be representative of typical traffic volumes.
- Further justification is required for the reduced traffic generation rate assumed during weekday PM peak period
- Traffic generation in the previous assessment did not include the four indoor courts
- Traffic modelling assumed upgrades to the layout of Victoria Road / Marsden Road intersection that will not necessarily be completed at the time of operation. The existing intersection layout should be used.
- It is unclear whether the current road and active transport infrastructure can support this land use
- Additional measures should be considered to reduce reliance upon private vehicles (i.e. active and public transport)
- In response to Council's RFI, Bitzios Consulting were engaged to undertake a peer review of the Rapid Transport Assessment, Traffic Impact Assessment and Council's comments.
- A meeting on the 22nd of February 2022 was held between the project team, Bitzios Consulting and Council to discuss Council's concerns regarding the proposal and help determine what level of detail was required to be submitted as part of the planning proposal in order to give Council's officers comfort that the transport impacts of the proposal could be adequately addressed
- Bitzios Consulting then undertook review and assessment of the core assumptions associated to the traffic assessments to date. This included additional reviews of example site operations including the different scale and frequency of events as well as review the practical transport impacts for such facilities in line with the communities' reasonable expectations
- A meeting was held with Council officers to present Bitzios Consulting's findings. Council then reviewed the operational information and provided feedback to inform both this traffic assessment for the Planning Proposal as well as scope for more detailed requirements as part of future development applications. A summary of Council's feedback is presented in Appendix A
- A meeting was held with TfNSW representatives on the 18th of July, in which Bitzios Consulting sought further clarification in regards to the layouts and years to be modelled for the Victoria Road / Marsden Road / Wharf Road intersection and the extent of the Melrose Park Development to be included in future modelling years. Following feedback from TfNSW representatives on the $16^{\text {th }}$ August 2022, this TIA was subsequently updated to reflect and respond to future land use and traffic analysis for Victoria Road corridor and intersections in proximity to the proposed development.

1.2 Scope

The scope of works for this Planning Proposal traffic impact assessment includes:

- Review of the existing site and operation, the surrounding road network, public transport and active transport
- Undertaking benchmarking of operations, traffic and parking impacts at similar netball facilities
- Assessment of the car parking provision based on similar netball facilities, the site specific transport system
- Estimation of the development traffic generation, distribution and impacts on the surrounding road network through detailed SIDRA Intersection modelling
- Review and recommendation of walk, cycle and public transport facilities to support the proposal
- Identifying potential traffic and parking impact mitigations to support the intended land use and varying scale events
- Providing high level commentary on the operation and management of events on the site.

2. Existing Conditions

2.1 Existing Site

The subject site is currently occupied by Marsden High School. Access is currently provided via Windbourne Street. The site is adjacent to residential dwellings, a childcare and a public primary school. The established nature of the existing school and adjacent primary school generate concentrated peak traffic periods during morning drop-off and afternoon pick-up periods.

Source: Nearmap
Figure 2.1:Subject Site Location

2.2 Surrounding Road Network

Details of the surrounding road network are outlined in Table 2.1 below.
Table 2.1: Surrounding Road Network Hierarchy

Road Name	Jurisdiction	No. of Lanes (Two-way)	Hierarchy	Divided	Posted Speed	Details
Winbourne Street	City of Ryde	2	Local	No	$40 \mathrm{~km} / \mathrm{hr}$	Primary access road (north-south) for the subject site
Marsden Road	TfNSW	4	Arterial	No	$60 \mathrm{~km} / \mathrm{h}$	North-south arterial road providing access to the site
Victoria Road	TfNSW	6	Arterial	Yes	$70 \mathrm{~km} / \mathrm{h}$	East-west arterial road providing access to the site
Brush Road	City of Ryde	2	Local	No	$40 \mathrm{~km} / \mathrm{h}$	North-south road fronting the subject site

The surrounding key intersections are identified in Figure 2.2 and detailed in Table 2.2.

Source: GoogleMaps
Figure 2.2: Surrounding Key Intersections
Table 2.2: Key Intersections

Intersection \#	Intersection Name	Jurisdiction	Intersection Type
1	Victoria Road / Marsden Road	TfNSW	Signalised
2	Marsden Road / Winbourne Street	TfNSW	Priority-controlled
3	Victoria Road / Brush Road	TfNSW	Priority-controlled (left-in, left out)

2.3 Existing Traffic Operations and Observations

2.3.1 Overview

The existing high school located on the site is accessed primarily via Winbourne Street, where a kiss and drop (KnD) facility is provided along the site frontage from Hermoyne Street to No. 16 Winbourne Street. Informal access to the site is also available via Brush Road.

Data was collected to establish the existing traffic conditions and operation around the subject site, including:

- Dash camera footage taken via drive by of the subject site and surrounding road network during the existing school peak hours on $9^{\text {th }}$ March, 2022
- Intersection counts at the 3 key intersections between 7:00AM - 9:00AM and 3:00PM - 6:00PM on $9^{\text {th }}$ March 2022, and 8:00AM $-1: 00 \mathrm{PM}$ on $12^{\text {th }}$ March 2022.
- Queue counts to coincide with the intersection counts at Intersection \#1 and 2
- 7-day tube counts undertaken on Winbourne Street and Brush Road commencing 9 ${ }^{\text {th }}$ March 2022.

The intersection count data, tube count data and queue count data are attached in Appendix B.

2.3.2 Network Peak Hours

Based on the traffic data collected, the current network peaks (based on two-way traffic movements) around the site are as follows:

- Key intersection 1 (Victoria Road / Marsden Road):
- AM Peak: 8:00AM - 9:00AM
- PM Peak: 5:00PM - 6:00PM
- Weekend Peak: 11:45AM - 12:45PM
- Key intersection 2 (Marsden Road / Winbourne Street):
- AM Peak: 8:00AM - 9:00AM
- PM Peak: 3:00PM - 4:00PM
- Weekend Peak: 11:30AM - 12:30PM
- Key intersection 3 (Victoria Road / Brush Road):
- AM Peak: 7:45AM - 8:45AM
- PM Peak: 4:45PM - 5:45PM
- Weekend Peak: 12:00PM - 1:00PM
- Winbourne Street:
- AM Peak: 8:00AM - 9:00AM
- PM Peak: 3:00PM - 4:00PM
- Weekend Peak: 11:00AM - 12:00PM
- Brush Road:
- AM Peak: 8:00AM - 9:00AM
- PM Peak: 3:00PM - 4:00PM
- Weekend Peak: 12:00PM - 1:00PM

2.3.3 Existing Site Peak

Based on site observations and the current operating hours of Marsden High School, the existing site peak has been identified as 8:00AM - 9:00AM and 3:00PM - 4:00PM on weekdays. The existing site is not operational on weekends. Based on the above, the following conclusions can be made:

- The Marsden Road / Victoria Road intersection AM peak captures both commuter and high school drop off demand; however, the PM peak results only from commuters as it occurs after the high school operations cease ($5: 00 \mathrm{pm}-6: 00 \mathrm{PM}$)
- The Winbourne Street / Marsden Road intersection peaks coincide with high school pick up and drop off (i.e. AM and PM peak).
- Similarly, the Winbourne Street and Brush Road peaks occur during the high school pick up and drop off
- The Brush Road / Victoria Road AM peak mostly aligns with school drop off; however, the PM peak results from commuters returning home, as it occurs later than school operational hours (4:45Pm - 5:45PM)
- Weekend peaks for all intersections / road links occur between 11AM - 1PM.

2.3.4 Winbourne Street Observations and Issues

There are high traffic volumes and low vehicle speeds during school peak hours on Winbourne Street. During weekends, traffic volumes reduce significantly and are primarily associated with surrounding residential based trip purposes. Average hourly weekday and weekend traffic volumes on Winbourne Street are highlighted in Figure 2.3 below.

Source: Matrix 7-day tube counts $9^{\text {th }}$ March - $15^{\text {th }}$ March 2022
Figure 2.3: Winbourne Street Two-way Hourly Traffic Volumes
On-site observations revealed that the off-street bus facility north of Farnell Street on the western side of the subject site is utilised as an informal pick-up / drop-off area by parents. This creates a high volume of northbound right turns at this location, creating delays and queueing for southbound vehicles on Winbourne Street as shown in Figure 2.4 below.

Figure 2.4:Winbourne Street (Southbound) Observations - Utilisation of Bus Facility for Pick Up (3:04pm on 9 March 2022)

Additionally, vehicles were observed to queue back on Winbourne Street, waiting for an opportunity to exit onto Marsden Road and travel south to the Victoria Road intersection. Queueing data for the Winbourne Street / Marsden Road intersection indicated that queues of up to 17 vehicles (approx. 100 m) occur in the southbound direction on Winbourne Street during both the AM and PM peak on weekdays. However, during weekends, minimal queueing was observed on this movement.

It is noted that the length of the right turn lane into Marsden Road only allows for approximately two vehicles to queue. Traffic count data at the intersection also indicates that during the commuter peak (5PM - 6PM), only 13% of vehicles exiting Winbourne Street into Marsden Road turn right, with the remaining 87% of vehicles turning left to continue to the Marsden Road / Victoria Road intersection.

2.3.5 Marsden Road Observations and Issues

Some queueing was observed in the southbound right turn lane on Marsden Road (north of the intersection with Victoria Road), as shown in Figure 2.5 below. This is attributed to the right turn movement onto Victoria Road heading westbound in the afternoon peak.

Figure 2.5: Marsden Road (Southbound) Observations - Queueing at Victoria Road Intersection (3:05pm on 9 March 2022)

Queueing data for the Winbourne Street / Marsden Road intersection indicated that queues of up to 17 vehicles (approx. 100m) extend north from the intersection during the AM peak. However, the maximum queueing on Marsden Road during the PM peak (approx.. 8 vehicles or 50 m north of the intersection) occurred well after school pickup time (5:00PM - 6:00PM). On the weekends, minimal queueing was observed at this intersection.

2.3.6 Brush Road Observations and Issues

Brush Road experiences lower traffic demand related to school drop off and pick up compared to Winbourne Street, as indicated by the hourly traffic volumes shown in Figure 2.6 below.

Figure 2.6: Brush Road Two-way Hourly Traffic Volumes
It was also noted that the northbound daily traffic on Brush Road was almost double the daily southbound traffic, so it is likely that the majority of parents utilising Brush Road for school pickup are continuing north rather than returning south to exit onto Victoria Road.

Due to on-street parking on both sides of Brush Road adjacent to the site frontage and the frequency of vehicles leaving the kerbside to enter the traffic lane, only a low speed can be maintained through Brush Road during site peak periods. Drivers must manoeuvre past each other as two-way access cannot be maintained when vehicles are parked on both sides of the road as shown in Figure 2.7.

Figure 2.7:Brush Road (Northbound) Observations - Constrained Road Width (3:00pm on March 9, 2022)

No queueing was observed from Brush Road into Victoria Road.

2.3.7 Existing Traffic Operations Summary

Key traffic impacts resulting from the existing site operation on the road network are summarised below:

- There is heavy traffic demand on Winbourne Street from 8AM - 9AM and 3PM - 4PM on weekdays, resulting in approx. 100 m queues on Winbourne Street to the north of the Marsden Road / Winbourne Street intersection
- The majority (87%) of vehicles exiting Winbourne Street into Marsden Road are heading southbound during the afternoon commuter peak. The demand for the right turn into Marsden Road is low, likely due to route choice for the turning movement with less delays (i.e. left turn into Marsden Road) and the lack of space to queue for the right turn.
- There is some traffic impact to Brush Road on weekdays; however, the majority of the traffic is travelling northbound and is not as heavy as on Winbourne Street. No queueing was observed on Brush Road into Victoria Road.
- The traffic demand from the existing high school on weekdays does not determine the PM peak of the Victoria Road / Marsden Road intersection (5PM - 6PM)
- Some queuing (approx. 100m) occurs southbound on Marsden Road north of the Winbourne Street intersection during AM peak and may be resulting from the operation of the high school. However, the queueing in the PM peak (50 m) occurs outside of school hours and is resulting from the commuter peak period (5PM - 6PM)
- There is no traffic impact from the existing site on the network during Saturdays.

2.4 Existing Parking Operations

2.4.1 Overview

As outlined in SCT Consulting's Traffic and Transport Impact Assessment Report and the Rapid Transport Assessment, on-street parking widely available in proximity to the subject site, as shown in Figure 2.8 below. This on-street parking is located along residential access and collector streets and apart form the existing school demands, does not exhibit any other major land uses or parking generators that result in high on-street parking utilisation.

Source: Marsden High School Netball Facility Rapid Transport Assessment (SCT Consulting, 2021)
Figure 2.8: On-street Parking Available in Proximity to the Subject Site

2.4.2 Background Parking Conditions

While existing parking surrounding the site associated with the school occurs during weekdays only and peaks during morning and afternoon periods, it is acknowledged that the period of when parking demands associated with the proposal will differ and be for a longer duration. Section 3 outlines the proposed facilities expected operations, with Section 5 reviewing the parking impacts and mitigation measures for further consideration through the development application phase to ensure the parking operations are acceptable to the communities expectations and do not result in any safety or amenity impacts to the surrounding area.

2.4.2.1 Winbourne Street Observations and Issues

Site observations during site peak hours revealed that the formalised kiss and drop zones along Winbourne Street are well utilised as shown in Figure 2.9 below. However, these parking impacts quickly dissipated after 9 am and 4 pm , with low parking occupancy observed on street after this time. As the school is not operational on weekends, there is low parking occupancy in the street on Saturdays.

Figure 2.9:Winbourne Street (Southbound) On-street Parking Utilisation for School Pickup (3:05pm on 9 March 2022)

2.4.2.2 Brush Road Observations and Issues

The informal parking opportunities along the subject site frontage on Brush Road are also well utilised during school peak periods, as shown in Figure 2.10 below.

Figure 2.10: Brush Road (Northbound) On-street Parking Utilisation for School Pickup (3:00pm on 9 March 2022)
As with Winbourne Street, these impacts very quickly dissipate after these peak periods, with low parking occupancy observed after 9am and 4pm on the weekdays, and on weekends.
While Brush Road provides an opportunity for on-street parking associated with the site, the width of the road does not support parallel parking on both side and maintain two-way traffic flow.

It is expected that irrespective of the parking provision accessed via Winbourne Street as part of the proposed facility, patrons will approach and access the facility from the east via Brush Road and its connecting streets. Therefore, improvements to parking and travel lane line marking to manage traffic flow, driveway accesses and provide designated parking areas is recommended along Brush Road and connecting streets to the east of the site.

2.5 Public Transport

The existing public transport links are described in detail in the SCT Consulting Traffic Impact Assessment Report. Overall and by virtue of the historical school land use over the site, the site is a well located to existing public transport services including both local services as well as higher frequency services along Victoria Road connecting to Parramatta and the City. Key bus routes surrounding the site are shown in Figure 2.11 below.

Source: Marsden High School Recreational Facility Planning Proposal Traffic and Transport Impact Assessment (SCT Consulting, 2021)
Figure 2.11: Key Bus Routes in Proximity to the Subject Site
The frequency of bus services is outlined in Table 2.3 below.
Table 2.3: Bus Routes and Frequencies

Bus Route	Route Description	Frequency
501	Parramatta to Central Pitt St via Victoria Rd	9 minutes during peaks on weekdays
513	Carlingford to West Ryde	30 mins during peak on weekdays
523	West Ryde to Parramatta	30 mins during peak on weekdays
543	Eastwood to West Ryde	1 service in AM and 1 in PM
544	Auburn to Macquarie Centre via Eastwood	30 mins during peaks on weekdays

The bus routes provide direct links to Eastwood, Parramatta, Carlingford, and Auburn.
Bus routes also connect to the West Ryde Rail Station provides connecting rail services every 15 minutes to / from Sydney CBD, Hornsby, and Gordon.
Additionally, the site is within a $15-20 \mathrm{~min}$ walk from the proposed Stage 2 preferred route alignment of the Parramatta Light Rail service passing through Melrose Park, which will provide links to Rydalmere to the west and Olympic Park to the south. This project was announced in October 2017 and is currently in the planning and development stage.

2.6 Active Transport

2.6.1 Pedestrian Facilities

The surrounding pedestrian facilities are described in detail in the SCT Consulting Traffic Impact Assessment Report (Dated $25^{\text {th }}$ March 2021). Overall and by virtue of the historical school land use, the site is well connected to existing pathway facilities. Figure 2.12 below indicates the walk-up catchment within 1200 m of the subject site.

Source: Marsden High School Recreational Facility Planning Proposal Traffic and Transport Impact Assessment (SCT Consulting, 2021)
Figure 2.12: Walking Catchment Map
The subject site has a significant walk-up catchment potential, which provides an opportunity to support a lower private vehicle mode share for this proposed community facility. The existing pathway network does include some 'missing gaps' in proximity to the site. Updates to the pedestrian pathway facilities fronting and surrounding the site will be discussed further within Section 6.

2.6.2 Cycling Facilities

The nearby cycle facilities have previously been outlined in the SCT Consulting Traffic Impact Assessment Report. In summary, there are currently no dedicated cycling facilities in proximity to the site. The footpaths can be used by cyclists under the age of 16 , along with their adult supervisors; however, the footpaths are narrow ($<3 \mathrm{~m}$) and likely to result in conflicts between pedestrians and cyclists.
Winbourne Street and Hermoyne Street are identified as part of a planned regional bicycle route (RR11) that is intended to provide a north-south connection between Eastwood and the Parramatta Valley Cycleway (refer to Figure 2.13 below). This route has not yet been developed with infrastructure or wayfinding, and there is currently no estimate on when this route will be formally delivered.

Source: City of Ryde Bicycle Strategy and Masterplan (2014)
Figure 2.13: Key Cycling Routes

3. Planning Proposal's Transport and Operational Considerations

3.1 Overview

Given the application is for a Planning Proposal only, this section outlines the likely operational details of the proposal and how the transport aspects should be considered with respect to the subject site.

3.2 Indicative Proposed Future Development Components

The applicant is seeking to rezone the land from SP2 Educational Establishments to RE1 Public Recreation and part C2 Environmental Conservation. For the purpose of assessing the traffic and transport impacts of the proposal, a likely development inclusion has been prepared and may include:

- 32 outdoor netball courts
- 4 indoor multi sports courts
- A gym facility to be ancillary and associated with the multi-sports court facility.

Access is proposed both via Winbourne Street and to a lesser extent via Brush Road. The existing public bus stops and on-site bus pick up and drop off zone will be retained along Winbourne Street.

3.3 Proposed Site Operations and Benchmarking

3.3.1 Overview

The previous traffic reports utilised first principles assessments based on generalised advice from ERNA to determine the likely traffic and subsequent parking impacts of the proposed development. While this approach is generally considered reasonable in the absence of empirical data sets or detailed surveys, the assessments did not consider the temporal demand for the site over a standard day or week as well various use scenarios of intensity.
This section investigates the various factors that influence the use of the site for the purpose of assessing the site's transport needs. This includes:

- The different operational scenarios from day-to-day training use, through to major national event carnivals
- Review of other similar scale netball facilities across metropolitan and regional NSW
- Operational times and the various types of activities/events on the site
- Review of parking and traffic data collected for the existing ERNA site in 2018 and what site specific and behavioural factors that affected the transport operations
- Court occupancies and operational factors that influence the use of the courts
- Comparison of the proposed operations to the current use over the site being a high school.

3.3.2 Potential Operational Scenarios

For the purpose of understanding and managing the transport outcomes to support the planning proposal, three operational scenarios discussed with Council officers and include:

- Scenario 1: Weekly Community Games and Training

- This scenario represents typical weekly operation and would include both weeknight training and Saturday competitions.
- Saturday competitions will be considered the peak day for this scenario, as court occupancies are likely to be highest on this day (the indoor courts will not be in use on Saturdays). These are expected to run between 8am and 5pm.
- Weekday training is likely to occur both during the school day as the site may be used for school sports, as well as after school training from $4 \mathrm{pm}-6 \mathrm{pm}$, with the main peak likely to occur in the evening.
- This scenario would apply during the netball season (April - September) yearly, and is the most frequently occurring usage scenario.
- The visitor catchment for this scenario includes visitors from within the local area or within nearby suburbs.

- Scenario 2: Medium Events, e.g. Regional Competition

- This usage scenario represents an infrequent event occurring approximately 3 times per year between April and September
- The events are expected to run between 8AM and 9PM at varying levels of intensity
- Typically these events would occur on a weekend or a three-day weekend
- Higher vehicle occupancies and number of spectators per court is assumed than Scenario 1
- Higher reliance on buses is expected given the wider catchment of the event as well as the team structure of patrons and their spectators
- The visitor catchment for this scenario includes visitors from within the local area and surrounding suburbs, as well as competitors or spectators from other regions. As such, higher vehicle occupancies and travel by bus / group travel is expected compared to day-to-day use
- This scenario would be subject to an event management plan overlay and travel demand management strategies to accommodate the temporary increase in intensity and demand. Further details in Section 7.

- Scenario 3: Large Events, e.g. National Competition

- This usage scenario represents a major event which would only occur once a year
- Typically these events would occur on a weekend and would run at varying levels of intensity between 8AM and 9PM
- These events may run in the evenings on the indoor courts only due to their elite status and higher spectator numbers compared to a standard court game
- Higher vehicle occupancies are expected compared to day-to-day games
- Higher reliance on buses is expected given the wider catchment of the event as well as the team structure of patrons and their spectators
- A larger number of visitors / competitors will be travelling interstate via the airport, public transport, and private charter bus
- The visitor catchment for this scenario includes competitors from other states and regions, and spectators from both the region and the local area.
- This scenario would be subject to an event management plan overlay and travel demand management strategies to accommodate the temporary increase in intensity and demand. Further details in Section 7.

As the most common frequency scenario is Scenario 1 (weekly community games and training), it is considered reasonable that the site should accommodate for the traffic and parking demands of this scenario. These are discussed in further detail in Section 4 and 5 respectively.

The medium and high use scenarios are not regular occurrences and will be subject to additional event management planning, travel demand management, and other mitigation measures as discussed in Section 7 to ensure that the impacts are appropriately managed, but permanent infrastructure is proportionate to the site operations and also economically viable.

3.3.3 Similar Sites

A review of similar sites to the proposal was undertaken to benchmark the intended operation of the proposed development against that of existing and approved sites. Historical aerial photographs from Nearmap and Google 'popular times' were investigated at each of the similar sites to help inform the daily and weekly usage profiles, court occupancy, and parking occupancy and surrounding impacts.
The findings from the benchmarking were used to inform the traffic and parking analysis to ensure that these assessments were representative of the likely intended operation of the site. These sites include:

- The existing Eastwood Ryde Netball Association netball courts at Meadowbank Park
- The Manly Warringah Netball Association (John Fisher Netball Courts)
- The Liverpool City Netball Association (Whitlam Leisure Centre)
- Sutherland Shire Netball Association (Bellingara Netball Courts).

3.3.4 Typical Daily and Weekly Usage Profiles

Google 'popular times' were investigated for each of the similar sites to identify the weekly peak periods. The findings are summarised in Table 3.1 below. It should be noted that 'popular times' were not available for all sites.

Table 3.1: Benchmarking Sites and Use Profiles

Site	Typical Weekday Profile	Typical Weekend Profile
Eastwood Ryde Netball Association		
Manly Warringah Netball Association		

As shown above, peak operation during the week typically occurs on Saturday morning, with another peak on Saturday afternoon and during the morning on weekdays.

This is consistent with the likely operation of the proposal, as school training will take place during the weekdays, after-school training will occur on weeknights, and competitions for various age groups will occur throughout the day on Saturday.

3.3.5 Court Occupancy

The historical aerial photographs of the selected sites demonstrated various court occupancies and parking demands that represented two of the three usage scenarios, as shown in Table 3.2.
Table 3.2: Court Occupancy for Various Scenarios

Site Location	No. of Offstreet Parking Spaces	Scenario	Court Occupancy (Occupied / No. of Courts)	Car Parking Occupancy
Eastwood Ryde Netball Association	429 (shared with soccer fields, parks and cricket nets)	Sc2-Regional Event	17 / 27 (63\%)	High
		Sc 1 - weekday event	10 / 27 (37\%)	Low / Medium
Manly Warringah Netball Association	19	Sc 2 -Regional Event	24 / 25 (96\%)	High with Overflow Parking
Liverpool City Netball Association	~260 (shared with oval and park)	Sc 1 - Saturday games	26 / 32 (81\%)	High
		Sc 1 weekday games	$\begin{aligned} & 20-25 / 32(63- \\ & 78 \%) \end{aligned}$	Medium - High
		Sc 2 - regional event	32 / 32 (100\%)	High Overflow
Sutherland Shire Netball Association	~330 (shared with playground and oval)	Sc 1 - Saturday event	$\begin{aligned} & 23-30 / 33(70- \\ & 90 \%) \end{aligned}$	Medium / Overflow

Examples of aerial photos indicating court usage and parking for various scenarios are shown in Figure 3.1, Figure 3.2, and Figure 3.3 below.

Source: Nearmap. Date: 18 July 2017
Figure 3.1:Scenario 1 Example (Weekday) - Eastwood Ryde Netball Association (Meadowbank Park)

Source: Nearmap. Date: 24 June 2017
Figure 3.2: Scenario 1 (Weekend) Example - Sutherland Shire Netball Association (Bellingara Netball Courts Centre)

Source: Nearmap. Date: 27 July 2014
Figure 3.3:Scenario 2 Example (Weekend) - Eastwood Ryde Netball Association
To summarise, typical court occupancies for the three scenarios were as follows:

- Scenario 1 - Standard Community Games Days and Training
- Weekday - between $30-80 \%$
- Saturday - between 70-90\%
- Scenario 2 - Carnivals: between 95 - 100\%
- Scenario 3 - Large Scale National Events: 100% expected. Likely to depend on event scheduling / timing of premium match offerings. Maximum court occupancy at any time will be similar to Scenario 2 , with court usage reducing to only one court for the final.
For the purpose of traffic and parking analysis detailed hereafter, the maximum court occupancy for Scenario 1 has been based on a conservative 90% on Saturdays, and 70% on weeknights during background peak periods.

3.3.6 Expected Peak Hours

For Scenario 1, the main site peak (i.e. the time at which 90% court occupancy is reached) is likely to occur on Saturdays from 9am - 11am based on the daily profiles outlined in Section 3.3.4 above.

However, based on the network peak hours, the critical time period for further traffic analysis on Saturdays would be in the middle of the day from 12PM - 1PM to coincide with the Victoria Road / Marsden Road intersection peak. Based on the daily profile data indicated by Google 'popular times', this would only represent a court occupancy of approximately two-thirds of the AM peak (60%). This would align with the expected change over between junior competition (morning) and senior competition (afternoon). It is understood that on a regular / average weekend game day utilising the outdoor courts, the indoor netball courts are not likely to be in competition use concurrently.

A smaller peak is expected to occur on weeknights between 4 pm and 6 pm for after-school and afterwork training as indicated in the daily profiles above. It is expected that 70% court occupancy is reached during this time period. Based on the network peak hours, the critical time-period for the weekday evening training would be from $5-6 \mathrm{PM}$.

It is noted that the proposed change in land use from a high school to a recreational facility results in a change in the timings of the site peaks, resulting in higher traffic volumes on Saturdays during the midday peak and on weeknights during the commuter peak. However, the proposed site peaks are likely to be spread over a longer time frame, rather than the concentrated morning and afternoon peaks as per the existing high school on the site.

3.3.7 Persons Per Court

For the purpose of understanding the person trip demands for the site, the estimated number of persons per court for various day-to-day scenarios are outlined in Table 3.3 below. These figures were provided by the operational consultants Otium and considered aspirational for the purpose of practical site operations.
Table 3.3: Persons Per Court

Scenario	No. of Players per Court	No. of Spectators per Court	No. of Referees $/$ Coaches per Court	Total Persons per Court
Saturday Competition	~ 16	$10-30^{+}$	$1-4^{\wedge}$	$\sim 27-50$
Weeknight Training	~ 16	16^{+}	4^{\wedge}	~ 36

Source: Otium Operational Data
+: Spectators expected to be affiliated with players (family) or other games (pre or post) and therefore do not add to vehicular traffic
^: Referees would be expected to attend multiple games concurrently.
These numbers are a conservative assumption and are in line with the maximum operation of other types of facilities. It should be noted that some spectators, coaches and players may be present on site for multiple games and therefore may not leave the site after one game. In addition, referees would not be expected to attend one game, but rather attend recurring games over the course of a game day.

3.3.8 Typical Length of Games

Typically, netball matches are scheduled at one and a half hour (90 minute) intervals, which allows a 15-minute changeover period in between games as outlined in Bitzios Consulting's Meadowbank Park Netball Traffic Impact Assessment that details the operation of the existing Eastwood Ryde Netball Association. The proposed netball facility is also expected to operate in a similar manner.

3.4 Summary of Findings

Several usage scenarios were considered as part of the assessment; however, Scenario 1 (day-today operation on weekdays and weekends) will be the focus of the following traffic and parking assessment. Scenarios 2 and 3 (medium and large events) will be subject to event management overlays and planning to mitigate any potential impacts, as will be discussed in Section 7.

The proposed netball facility is intended to operate equivalent to similar facilities in the area in terms of peak hours, court occupancy, and number of persons on site. Therefore, the level of impact of the proposed change in land use is commensurate with the community's reasonable expectations for a facility of this nature. The benchmarking data collected is considered appropriate to further inform traffic and parking impact assessments and calculations detailed in latter sections of this report.

Based on this information, the impacts of the proposed land use will be spread over a larger period of time than the impacts of the existing school.

4. Traffic Assessment

4.1 Assessment Context

The following traffic assessment assumes a day-to-day operational scenario. The purpose of the assessment is to determine the impacts of the proposed netball courts on the external road network. This requires that the proposal's impacts be determined at the anticipated 'year of opening' and at the 10 -year design horizon. For the purpose of this assessment, the proposal's anticipated year of opening is 2024. As such, the 10-year design horizon year is 2034 .

4.2 Assessment Area

Detailed analysis (SIDRA modelling) was undertaken on the following intersections to determine the impact of the proposed development:

- Intersection \#1: Victoria Road / Marsden Road signalised intersection
- Intersection \#2: Marsden Road / Winbourne Street priority-controlled intersection
- Intersection \#3: Victoria Road / Brush Road priority-controlled intersection

Due to the proximity of Intersections \#1 and 2, these were modelled as a network, whilst Intersection \#3 was modelled as an individual site. Intersection movement summaries from the SIDRA modelling are attached in Appendix F.

4.3 Traffic Demands

The traffic demands to be modelled have been prepared for the following scenarios:

- Year 2024 Weekday PM peak hour / Saturday peak hour, background traffic volumes: determined by applying growth rates to the traffic survey data and the anticipated yield of the Melrose Park at year 2024
- Year 2024 Weekday PM peak hour / Saturday peak hour, design traffic volumes: determined by combining background traffic, the anticipated yield of the Melrose Park at year 2024 and the development traffic
- Year 2034 Weekday PM peak hour / Saturday peak hour, background traffic volumes: determined by applying growth rates to the traffic survey data and the anticipated yield of the Melrose Park at year 2036
- Year 2034 Weekday PM peak hour / Saturday peak hour, design traffic volumes: determined by combining background traffic, the anticipated yield of the Melrose Park at year 2036 and the development traffic.

4.4 Background Traffic

The following intersections were surveyed by Matrix on Wednesday $9^{\text {th }}$ March 2022 between 7:00 AM to 9:00 AM and 15:00 PM to 18:00 PM, as well as on Saturday $12^{\text {th }}$ March 2022 between 8:00 AM to 1:00 PM:

- Intersection \#1: Victoria Road / Marden Road signalised intersection
- Intersection \#2: Marsden Road / Winbourne Street priority-controlled intersection
- Intersection \#3: Victoria Road / Brush Road priority-controlled intersection

The traffic survey data used in this traffic impact assessment has been provided in Appendix B.
Based on the intended site operation, site peak hours and existing network peak hours, the following 'worst case' peak hours for assessment were selected:

- Weekday PM Network Peak Hour: 5:00PM - 6:00PM
- Saturday Network Peak Hour: 11:45AM - 12:45PM

The selection of these peak periods also ensures that any background traffic from the existing high school is avoided in the analysis, as this land use will be removed from the site.
An annual compounding growth rate of 1.38% has been applied to Victoria Road, Wharf Road, and Marsden Road traffic volumes to forecast future background traffic, based on analysis of STFM modelling outputs from 2019 - 2026 on Victoria Road.
No growth has been applied to Brush Road or Winbourne Road as these have been assumed to be closed catchments with very little intensification of the existing local land uses.

4.5 Melrose Park Development Traffic

In addition to the above background growth rate, the nearby Melrose Park development has also been considered for all future background volumes. The Melrose Park TMAP (prepared by Jacobs in 2018) was requested by TfNSW to be considered within further growth on Victoria Road as was used as follows:

- 2024 Background volumes: Anticipated approach volumes from Melrose Park Precinct Model (MPPM) modelling was taken for each leg for the 2036 case and interpolated back to the project opening year 2024 (i.e. 11,000 dwellings to 3,200 dwellings) and applied to background surveys
- 2034 Background Volumes: Due to the MPPM model values given for the year 2036, it was determined that the two year reduction in volumes (from 2036 to 2034) would result in an insignificant change. Therefore, the 2036 volumes have been used as a conservative representation of the +10 year design horizon of 2034
- Weekend Volumes: To inform the Saturday midday peak volumes of the Melrose Park development, an average of the AM and PM peaks was used to represent a midday flow in terms of both IN / OUT flows from the development and applied to background surveys.

The forecast background traffic has been provided in Appendix C.

4.6 Development Traffic Generation

4.6.1 Vehicle Occupancy

A vehicle occupancy of 2.5 persons per vehicle has been applied. This is based upon assessments undertaken at similar sites as well as advice from the potential user of the facility, Otium. SCT Consulting previously assumed a vehicle occupancy of 2.4 persons per vehicle in their Rapid Transport Assessment and Traffic Impact Assessment.

4.6.2 Mode Share

Typically, the mode share for netball courts is heavily reliant on private vehicles. Data provided by the operator (Otium) from surveys conducted at 7 similar facilities indicates that up to $90-95 \%$ of trips to netball courts are typically by private vehicle, with very low usage of public and active transport to this type of site.
However, as the goal of this development is to provide a recreational facility for the community that minimised the traffic generation utilising Winbourne Street during peak times, it is proposed to provide a proportionate level of on-site parking as a means to encourage visitors to make use of existing active and public transport facilities. The proximity of the proposed light rail corridor in Melrose Park, the bus stops on the site frontage, and the regional bicycle route on Winbourne Street further provide convenient connections to the facility. Therefore, a 90% mode share for private vehicles has been assumed.

4.6.3 Trip Rate per Court

As there is no standardised trip rate for netball courts, a first principles approach was used to calculate the number of vehicle trips. Based on the operational data outlined in Section 3.3 as well as the mode share considerations and vehicle occupancy outlined above, the number of vehicle trips per hour was calculated as shown in Table 4.1 below.

Table 4.1: \quad Calculation of Trip Rate per Court

	Maximum Court Occupancy for Day 1	Likely Occupancy During Selected Period 2	No. of Courts in Operation	Max. No of Persons Entering \& Exiting the Site 3	Two-way Vehicle Volumes per Hour	Trip Rate / Court / Hr
Saturday 12PM - 1PM	90%	60%	20	1,280	461	23
Weekday 5PM - 6PM	70%	70%	22	1,408	507	23

${ }^{1}$ Based on court occupancy benchmarking
${ }^{2}$ Factored court occupancy based on estimated daily profiles
${ }^{3}$ Assuming all players leave at termination of the game, all players / spectators arrive in the 15 minutes prior to a game, and one game changeover during peak hour. 16 players and 16 spectators were assumed per court.
${ }^{4}$ Assuming 90% private vehicle mode share and 2.5 occupants per vehicle
This yields 461 vehicle trips during the weekend peak and 507 trips during the weeknight peak. It should be noted that all assumptions are conservative, resulting in a conservative traffic generation. The assessment does not account for visitors staying on site for multiple games (players and spectators).

4.6.4 Traffic Splits

Data sourced from a previous TIA report for the existing East Ryde Netball Association netball facilities in Meadowbank indicate that the In / Out split during peak traffic conditions was 54\% / 46\% per hour based on 2018 counts collected at the Andrew Street / Adelaide Street roundabout. Estimated vehicle trips in and out of the site are summarised in Table 4.2 below.

Table 4.2: Development Traffic Splits

Land Use	Weekday Peak Split		Saturday Peak Split		Weekday Peak Development Trips		Saturday Peak Development Trips	
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Proposed netball courts	54\%	46\%	54\%	46\%	274	233	249	212

4.7 Traffic Distribution and Assignment

The traffic distribution for the proposed netball courts was determined using the following assumptions:

- 25% of trips to the site enter from the northern end of Brush Road, with half of those returning north via Brush Road
- 12.5% of trips to the site enter from the northern end of Windbourne Street, with the same percentage of trips returning north via Windbourne Street
- 25% of trips to the site enter from the northern side of Marsden Road
- 25% of trips to the site enter from the southern side of Marsden Road (via Victoria Road)
- 12.5% of trips to the site enter from Brush Road via Victoria Road
- 50% of trips leave the site southbound on Winbourne Street
- Existing left / right splits exiting Winbourne Street into Marsden Road were applied (i.e. 17\% turning right and 83% turning left)
- Existing left / through / right splits exiting Marsden Road into Victoria Road were applied (i.e. 55\% left, 17% through and 27% right)
- 25% of trips leave the site southbound on Brush Road onto Victoria Road

The traffic distribution is attached in Appendix D, and the resulting design traffic volumes (including background and development traffic) are attached in Appendix E.

4.8 Intersection Assessment

4.8.1 Future Intersection Upgrades

TfNSW has indicated that both the Victoria Road / Marsden Road / Wharf Road intersection and the Winbourne Street / Marsden Road intersection are planned for future upgrade as part of the traffic and transport improvement strategy for Victoria Road and upgrades associated with the Melrose Park Development. As such, these intersections have been modified from their existing configuration to align with the planned intersection layouts for the 2024 and 2034 future cases as outlined within the Melrose Park TMAP (Jacobs, 2018).

4.8.2 Intersection 1 - Victoria Road / Marsden Road Intersection

Figure 4.1 shows the future geometric layout of Intersection 1 with bus lanes provided in both the eastern and western directions during peak hours, in line with the intended vision for the corridor-city servicing bus network for years 2024 and 2034.

Figure 4.1:Intersection 1: Victoria Road / Marsden Road Future SIDRA Layout
The SIDRA results for Intersection 1 are summarised in Table 4.6.
Table 4.3: Victoria Road / Marsden Road SIDRA Results Summary

Peak Period	Year	Traffic Scenario	Victoria Road / Marsden Road		
			DOS	Average Delay (s)	95\% Back of Queue (m)
Weekday PM Peak	2024	Forecast Background	1.40	329	904
		Design	1.50	342	942
	2034	Forecast Background	2.06	702	1740
		Design	2.05	729	1775
Weekend Peak	2024	Forecast Background	1.19	185	555
		Design	1.26	199	588
	2034	Forecast Background	1.94	553	1250
		Design	1.79	524	1270

The intersection exceeds a Degree of Saturation (DOS) of 1.0 for the 2024 background with Melrose Park scenarios (acceptable roundabout DOS <0.90). At the 10-year design horizon (2034), the forecast background traffic demand result in a DOS exceeding 2.0 in the PM weekday peak. Irrespective of the future development over the subject site, there are significant queues and delays at this intersection both at the year of opening and at the 10-year design horizon during peak periods. This peak period operation for Victoria Road is well known given its function as the primary urban arterial road north of the Parramatta River between Parramatta and Gladesville. Additionally, the inclusion of proposed two-way bus lanes significantly reduces the operational efficiency by reducing the number of available through-lanes compared to the existing, increasing queue lengths.

It is important to note that the Melrose Park TMAP incorporated a full network model as well as peak period and capping model runs. The demand volumes utilised within this Sidra analysis are therefore considered conservate. In regard to the impacts of the proposal, the results show that the proposal's traffic results in only a minor increase in delay in all scenarios. Given the operations of the intersection, it is expected that patrons of the facility travelling to and from the site will consider these limitations when considering mode, travel time and route to the facility. Specifically, the grid network surrounding the site allows for other roads in the area to avoid localised congestion at this intersection, minimising the expected impacts to this intersection. Additionally, the promotion of alternate travel modes as outlined in the Green Travel Plan for this site will reduce the traffic demands resulting from the development.

Overall, the proposed development adds 203 vehicles to the intersection during the weekday PM peak and 185 vehicles to the intersection during the weekend peak. This represents an overall increase of 4% in traffic volumes through the intersection for both weekday PM peak and weekend peak at year of opening (2024).

Given the above as well as TfNSW's future planning for Victoria Road to support public transport infrastructure, specific infrastructure upgrades in addition to those already planned by TfnSw or for Melrose Park are not recommended to be imposed at this location.

4.8.3 Intersection 2 - Marsden Road / Winbourne Street Intersection

As requested by TfNSW, the geometric layout used for the 2024 and 2034 future cases, have included a channelised right-turn treatment on the southern approach of Marsden Road. A high-level design review of the feasibility of a channelised right-turn has been undertaken, considering using the extended design domain of Austroads Guide to Road Design Part 4A (AGRD4A) and the existing road alignment / form and constraints. Considerations for the channelised right turn pocket include:

- Minimum 3.3m wide through-lanes in the northern and southern directions
- 3.0 m wide right-turn lane from the southern approach
- 30 m short-lane for the right-turn from the southern approach
- 80 m short-lane for the right-turn for the northern approach to the Victoria Road / Marsden Road intersection
- 1.5 m painted centre median.

Figure 4.2 shows the future potential geometric layout of the Marsden Road / Winbourne Street intersection. This future planned upgrade was incorporates solely based on future works planning on Marsden Road and not as a result of the proposed development.

Figure 4.2: Marsden Road / Winbourne Street Future SIDRA Layout
The above layout takes into account some of the key feature of the proposed intersection upgrade as part of the Melrose Park structure plans (i.e. number of lanes, lane lengths). It is noted that modifications to the southern approach will have flow on effects to the Victoria Road / Marsden Road intersection to the south.

The SIDRA results for Intersection 2 are summarised in Table 4.4. The operation of this Winbourne Street/Marsden Road intersection has been undertaken as a network and is impacted by peak period queueing back from Victoria Road located to the south. Line marking and signage works were undertaken in 2017 to help formalise peak period traffic movements and manage queuing. The operations of this intersection and surrounding road network are shown within survey data to manipulate traffic distribution and discourage right turn movements out of Winbourne Street. Specifically, only 13% of trips exiting Winbourne Street turn right onto Marsden Road, while 87% exit left onto Marsden towards Victoria Road. This is an important factor for assessing the proposals likely traffic impacts to this intersection. When considering the road network operations and traffic generated by the proposal at this intersection, the road network will continue to operate in a similar manner with the inclusion of the proposal. Traffic modelling demonstrates that during both weekday peak period and weekend peak period operations of the Marsden Road / Winbourne Street intersection do not significantly worsen to a level that warrants additional mitigation measures to be imposed.

Specifically, the highest delay at the intersection is the right turn from Winbourne Street into Marsden Road. The modelling indicates that there is an minimal increase to delay resulting from the proposed development (<10 seconds at the 10-year design horizon during PM weekday peak).
Table 4.4: Marsden Road / Winbourne Street SIDRA Results Summary

Peak Period	Year	Traffic Scenario	Marsden Road / Winbourne Street		
			DOS	Average Delay (s)	95\% Back of Queue (m)
Weekday PM Peak	2024	Forecast Background	0.23	2	2
		Design	0.31	2	6
	2034	Forecast Background	0.28	2	43
		Design	0.46	3	77
Weekend Peak	2024	Forecast Background	0.17	1	1
		Design	0.48	3	80
	2034	Forecast Background	0.30	2	38
		Design	0.48	11	80

4.8.4 Intersection 3-Victoria Road / Brush Road Intersection

Figure 4.3 shows the geometric layout of Intersection 3.

Victoria Road
Figure 4.3: Intersection 2: Victoria Road / Brush Road SIDRA Layout
It has been noted that during the PM peak on weekdays, a bus lane operates westbound on Victoria Road. A nominal 10 buses per hour were added to the kerbside lane, which was prioritised to buses only in the model. The SIDRA results for Intersection 1 are summarised in Table 4.5.

Table 4.5: Victoria Road / Brush Road SIDRA Results Summary

Peak Period	Year	Traffic Scenario	Victoria Road / Brush Road		
			DOS	Average Delay (\mathbf{s})	95\% Back of Queue (m)
	2024	Forecast Background	0.69	1	1
		Design	0.70	1	2
Weekend Peak	Forecast Background	0.89	1	1	
	2024	Design	0.90	2	2
		0.57	1	1	

The results show that the development traffic results in negligible (<5 seconds) increase in delays, however operate at a DOS >0.8 in the 2034 weekday scenarios. The high DOS can be attributed to the two through-lanes in each direction reaching the SIDRA lane capacity. The largest delays are attributed to vehicles turning in and out of Brush Road.

4.9 Capacity Assessment - Winbourne St and Brush Rd

Winbourne Street and Brush Road are both classified as local roads. To determine the forecast daily traffic volumes on Winbourne Street and Brush Road, the weekly average hourly vehicle volumes collected via 7-day tube counts were used. No growth was applied as these roads are assumed to be closed catchments.

The calculated daily trip generation from the netball courts was then added to determine the design traffic, and compared with the environmental capacity of the road (sourced from RTA Guide to Traffic Generating Developments), as shown in Table 4.6 below.
Table 4.6: Road Capacity Assessment

Road	Road Type	Capacity (per lane one-way) (veh/hr)	2022 PM Peak Volumes	Development Generated Two-wayTraffic (veh/hr)	Design Traffic (veh/hr)
Winbourne Street	Local	600	215	175	390
Brush Road	Local	600	71	142	213

The capacity of both Winbourne Street and Brush Road is sufficient to accommodate the additional traffic resulting from the intended future use of the site following the proposed rezoning.

4.10 Summary of Traffic Impacts

The proposed removal of the existing high school results in a decrease in traffic demands on Winbourne Street and Brush Road from 8AM - 9AM and 3PM - 4PM during weekdays. Additionally, the highest traffic impact for the proposed land use is likely to be outside the network peak hours (i.e. on Saturday morning and afternoon), where the surrounding road network has sufficient capacity to accommodate the traffic demands from the proposed land use during a typical day-to-day usage scenario.

It has been noted that Victoria Road / Marsden Road intersection operates at capacity in the 2024 base cases; however, SIDRA modelling indicates that the expected impact of the proposed netball facility results in negligible increases in delay at the intersection during the weekday PM peak. The development traffic represents only a 4% increase from year of opening background traffic at this intersection.

Victoria Road / Marsden Road will continue to operate at capacity thresholds during peak periods in future years irrespective of the proposal. The proposal's net traffic impacts to the overall performance of the intersection are considered negligible and not result in specific upgrades or mitigation measures to support the proposal.

It is likely that the existing delay at the Victoria Road / Marsden Road intersection during the PM commuter peak will factor into travel mode choice consideration for the site including patrons within the local walking and cycling catchment to consider walking or cycling to the site.

The Winbourne Street / Marsden Road intersection functions under capacity during both peak periods for the year of opening and 10-year design horizon. Minor queueing ($<10 \mathrm{~m}$ or one vehicle) is expected northbound on Marsden Road at the right turn into Winbourne Street; however, the expected delay from this is minimal (<5 seconds).

All other key intersections are functioning above, or approach capacity, in both the base case and design case for year of opening and 10-year design horizon during weekday PM peak and weekend peak, with negligible increases to delay resulting from the proposed land use. Additionally, Winbourne Street and Brush Road have sufficient capacity to accommodate the proposed change in land use during the site's peak periods.

Overall, the preliminary modelling demonstrates that the proposal can be accommodated within the surrounding road network and intersections. Further detailed analysis of the traffic impacts will be undertaken as part of the development application's traffic impact assessment report.

5. Car Parking Assessment

5.1 Car Parking Requirement and Provision

While Council's Development Control Plan does include a parking rate for Recreation Facilities (outdoor) at a rate of 3 spaces per court, this parking rate has been acknowledged by Council as not representative to meeting the practical demands for the proposal and specifically netball courts. Therefore in response to Council's position, benchmarking of parking rates at similar sites was undertaken to determine a practical parking rate that has been applied by both Council and also other jurisdictions. The example site parking rates are summarised in Table 5.1 below.
Table 5.1: Parking Rates from Similar Sites

Site Name	Parking Provided	No. of Netball Courts	Parking Rate per Court (On-site Parking Only)
Eastwood Ryde Netball Association (ERNA)	429 (shared with soccer fields, parks and cricket nets)	28	15.3 spaces per court
Manly Warringah Netball Association	22 on site; 214 on street parking bays on Abbott Road (shared with football club and oval)	25	9.44 spaces per court
Liverpool City Netball Association	~260 (shared with oval and park)	32	8.1 spaces per court
Sutherland Shire Netball Association	~330 (shared with playground and oval)	30	11.0 spaces per court
Tweed Netball Association	148 spaces; including 40 off-street parking spaces shared with Tennis Facility and 108 onstreet parking spaces on surrounding streets	24	6.1 spaces per court
Average Parking Rate			8.18 spaces per court

Based on the review of the similar netball facilities, the average parking provision rate equates to 8.18 spaces per netball court. It is important to note that many of the other facilities provide shared parking with other community land uses, which often operate at the same time (i.e. concurrent sport training and game days). Therefore, these sites would exhibit a higher overall parking demand than the subject site on Winbourne Street. With consideration to the local ERNA site, the parking provision located adjacent to the netball facility (L H Waud Sports Field) includes 208 parking spaces and equates to a rate of 7.4 spaces per court. This site also experiences shared parking utilisation for neighbouring sport uses as outlined in Section 3 for weekday and weekend operations.
Many of the example sites are also reliant and designed around the use of formalised on-street parking fronting the site or within the surrounding road network. This community-based parking layout to support the facility allows for use of the sites parking provision by other neighbouring users outside peak operational times.

With consideration to the above parking rates applied to similar scale facilities, as well as the subject site's location with respect to for a potential walk-up catchment associated with the surrounding community use, an on-site parking provision of at least 8 spaces per court is considered appropriate.

When calculating the parking provision, it is noted that both the indoor netball courts and gym are not expected to be stand-alone or additional parking generators during peak operations times (i.e. Saturday morning competition hours). This is due to the indoor courts being reserved for major / elite games only and the gym operating as ancillary to the facility. Therefore, for the purpose of peak parking demand for the 32 outdoor netball courts is considered appropriate to determine the parking requirements for the proposal.
Based on a provision of 32 outdoor netball courts, a parking requirement of approximately $\mathbf{2 5 6}$ car parking spaces (8 spaces per outdoor court). is considered appropriate for the proposal and consistent with the operation of similar facilities throughout regional New South Wales and metropolitan Sydney. This parking provision would also maximise the on-site parking to reduce impacts to the surrounding residents, whilst also managing the overall private vehicle trip generation accessing the site via Winbourne Street.

5.2 Behavioural Factors Influencing External Parking Usage

Irrespective of the on-site parking provision and consistent with the operations of the existing high school on the site, it is likely that some patrons to the facility accessing the site from the east by private vehicle may choose to park on the eastern side of the facility via Brush Road and surrounding streets. This may be due to a combination of the following factors:

- Convenient on-street parking in close proximity to the eastern courts for either game day or training
- Trip distribution and route choice favouring local streets over Marsden Road and Victoria Road.

Based on these behavioural considerations, it is recommended that mitigation measures be implemented on the surrounding streets and as part of operational planning for the facility. These measures may include but not limited to:

- Additional line marking and regulatory signage is installed to formalise parallel parking bays on Brush Road, maintain two-way traffic flow and ensure residents' driveways are not obstructed by visitors parking on street
- The facility's Transport Access Guide (TAG), Green Travel Plan (GTP) and any Event Traffic Management Plans should clearly outline designated parking areas within the facility along with any temporary off-site parking arrangements and alternates transport modes. Further details are outlined in Section 7 and will be provided as part of the Development Application traffic report.

5.3 General Car Park Design Recommendations

Given the application relates to the Planning Proposal phase of the project, detailed parking layouts and associated internal transport components of the design are not yet defined. Therefore, it is recommended that the internal transport components, parking areas as well as any external traffic works be designed in accordance with:

- Council's Development Control Plan (DCP)
- Australian Standards AS2890 Parking Facilities.
- Australian Standards AS1742 Manual for Uniform Traffic Control Devices
- Austroads Guidelines.

6. Alternative Transport Assessment

6.1 Pedestrian Access and Facilities Assessment

Given the site's historical use as a high school, the site is well located in an established residential are and generally well connected by surrounding pathway network. The key pedestrian desire lines to and from the subject site, as well as existing crossing locations, are shown in Figure 6.1 below.

Figure 6.1: Pedestrian Desire Lines and Existing Crossings
As shown above, pedestrian crossings on Winbourne Street and Brush Road will be retained as part of the proposal. Generally, the existing pedestrian network caters for the likely desire lines for the subject site. However, SCT Consulting's Traffic and Transport Impact Assessment Report identified several gaps in the pedestrian network surrounding the site, namely:

- Besides the school crossing adjacent to Ermington Public school, there are few formalised crossings on Brush Road to cater for east / west desire lines to and from the subject site
- Footpaths are only provided on one side of many of the east-west streets connecting with Brush Road (i.e. Sindel Street, Cheers Street, Tramway Street)
- Only one formal crossing is available on Victoria Road on the eastern leg of the Marsden Road / Victoria Road intersection

6.1.1 Pedestrian Access and Facility Recommendations

In order to improve pedestrian access and encourage higher usage of active transport to minimise traffic and parking impacts, the following upgrades are recommended in conjunction with the proposal:

- Providing an additional formalised crossing on Brush Road between Sindel Street and Cheers Street to facilitate safe pedestrian movements between the residential catchment to the west of the site and the site entry on Brush Road. This may be in the form of a pedestrian refuge island
- Formalising a shared path (minimum width 3 m) through signage and line marking on Winbourne Street between Marsden Road and Hermoyne Street.

6.1.2 On Site Pedestrian Facilities Requirements

The following requirements for pedestrian facilities will apply to future designs of the proposed netball facility in order to comply with Council's Development Control Plan and AS2890.1:

- A pedestrian connection from both site frontages (i.e. Winbourne Street and Brush Road) to the building entrance will be required.
- The existing pedestrian footpaths along the site frontage (Winbourne Street, Brush Road) will be required to be retained post construction as per existing
- Pedestrian sight triangles will be required on both sides of the car park access/es to ensure sight visibility and pedestrian safety

6.1.3 On Site General Design Recommendations

The following design principles and recommendations should be considered as part of future development application stages to comply with Council's Development Control Plan and relevant Australian Standards:

- Line marked pedestrian paths should be provided within the carpark to the entrance of the facility
- Marked pedestrian crossings of the circulation aisles within the carpark should be provided.
- Bollards should be provided near any building accesses or pedestrian areas adjacent to traffic lanes.

6.2 Bicycle Access and Parking

6.2.1 Bicycle Access Assessment

As the subject site currently does not have any dedicated cycling paths in its vicinity, cycling access is limited to cyclists riding on the road network and juniors (under 16) riding on the footpaths. It is noted that school traffic and parking will reduced from Winbourne Street / Brush Road (except for Ermington Public School impacts) once the site is rezoned. In addition, the future delivery of the proposed Regional Bicycle Route (RR11) along Winbourne Street / Hermoyne Street would provide further cycling connectivity to the site from Eastwood and Parramatta.
The development therefore presents an opportunity to integrate with planned cycling links and infrastructure in the area.

6.2.2 Bicycle Access Recommendations

In order to better accommodate higher pedestrian activity as well as support cycling access along the frontage to the site, it is recommended to formalise the shared path (minimum width 2.5 m) on the eastern side of Winbourne Street between Marsden Road and Hermoyne Street.

6.2.3 On Site Bicycle Facilities Requirements

The following requirements for cycling facilities will apply to future designs of the proposed netball facility in order to comply with Council's Development Control Plan and AS2890.3:

- A minimum of 10% of the minimum car parking requirement (i.e. 25 bicycle parking spaces) will be provided for visitors and employees
- Employee bicycle parking will be secure and undercover
- Visitor bicycle parking will be provided at a location that is visible at the entrance of the facility, designed so that visitors are able to lock at least the frame of the bicycle and one of the wheels to the bicycle parking device
- End-of-trip facilities (including at least one shower and change room) will be provided.
- A shared path link between the entrance of the facility and the footpaths on Brush Road and Winbourne Street will be provided.
- Wayfinding signage to the bicycle parking and end-of-trip facilities will be provided.

6.3 Public Transport Assessment

6.3.1 Public Bus Facilities

As outlined in Section 0 of the report, the subject site is surrounded by several bus stops which provide frequent service and links to and from several suburbs in the vicinity.

6.3.2 Private Bus / Coach Facilities

The existing on-site bus pick up and drop off area will be retained as part of the development with the capacity to accommodate at least one coach, as will the bus stops along both sides of Winbourne Street.

Additional capacity for buses and coaches will be included in the on-site parking design. Both permanent coach bays as well as flexible use parking bays (e.g. parallel parking bays that can be repurposed as bus bays during events) will be included. The demand for coach parking is likely to be low during day-to-day (Scenario 1) operations. For larger scale events, please refer to Section 7.

6.4 Green Travel Planning

For developments of this nature, the preparation of a Green Travel Plan (GTP) is recommended to support the facility by outlining strategies to reduce the dependency on private vehicles and encourages travel mode behaviour change towards more sustainable travel options such as cycling, walking, carpooling and public transport. Increased uptake of public transport and active transport can bring a number of benefits to employers, staff, local communities and the environment. These include:

- reduced congestion on surrounding roads and associated parking demands
- reduced emissions associated with private vehicle usage
- a healthier, more active and more productive community
- a greater sense of community among users if the facility
- reduction in car operating costs such as fuel and vehicle wear.

GTPs are designed to be used as 'live document' by the owner / operator of the facility. The GTP should be developed in consultation with users and transport stakeholders. It should also be monitored and updated on a regular basis (often annually) to monitor progress towards active transport mode share targets, incorporate new innovation in sustainable travel and review and updates strategies.

7. Larger Scale Events and Travel Demand Management

7.1 Overview

Section 2 outlines the various scale of events and also frequency of use. While only occurring for limited days a year, regional (medium scale) and national (large scale) events will require additional event management overlays to occur over the site and surrounding transport system. Prior to any events, it is recommended that in addition to the Green Travel Plan (GTP) and event traffic and pedestrian management plan be developed and submitted to Council. As outlined in Section 3, the transport impacts of medium and larger scale events differ from day-to-day operations in several ways, namely:

- Visitors are travelling from a larger catchment outside greater Sydney, in some cases interstate and do so via public and group booked transport
- Vehicle occupancies are generally higher for major events as there are more spectators and groups. Based on similar projects, during events vehicle occupancies have been assessed at around 2.8-3.0 persons per vehicle
- Given the team nature of netball, larger groups commonly travel together if coming from another region, therefore increasing the demand for bus / coach parking and servicing will be greater that usual.

7.2 Event Traffic and Parking Management Strategies

For medium and large-scale events, it is expected that an event traffic and pedestrian management plan (ETPMP) would be development for the site. This may incorporate a overlay treatments to manage traffic demands and road network operations as well as off-site parking and transport services to connect to the site. To manage travel demands, the ETPMP may include:

- Providing travel advisory packages to visitors before the event promoting carpooling and catching the bus and rail services
- Partnering with Transport for NSW to provide supplementary bus services for special events
- Providing Park n Ride or shuttle buses to / from transport hubs, such as Meadowbank and West Ryde railway stations or the existing Meadowbank Park site
- Limiting on-site parking availability to event staff and shuttle buses / coaches and stating this to attendees prior to the event
- Repurposing on-site parking bays to bus / coach bays (e.g. parallel parking bays)
- Providing off site bus / coach parking
- Utilising nearby sites for overflow parking (e.g. Ermington Public School sports ground adjacent approx.. 150 car spaces)
- Ensuring there is a pick-up / drop-off area within the site for a coach.

8. Summary and Conclusion

The key findings of the Traffic Impact Assessment for the proposed multi sports stadium to be located at 22 Winbourne Street, West Ryde are as follows:

- The proposal includes rezone the subject site from SP2 Educational Establishments to RE1 Recreation and part C2 Environmental Conservation (now known as C2 Environmental Conservation). The proposal has the potential to include sports facility uses including up to 32 outdoor netball courts, 4 indoor multi sports courts and an ancillary gym.
- The existing high school will be demolished, resulting in a decrease in traffic and parking demand to the surrounding road network during typical school peak operating times on weekdays. Preliminary traffic analysis has been undertaken on the surrounding road network to respond to Council's concerns regarding its ability to accommodate the proposal. It is important to note that following the Planning Proposal, a separate Development Application and further Traffic Impact Assessment Report will be prepared
- The subject site is well supported by public and active transport facilities and strategically located near established residential areas of Denistone West, Eastwood and West Ryde as well as new residential growth suburbs of Melrose Park.
- Planned improvements to the public transport system along Victoria Road along with Council's cycleway rollout will further enhance the walk, cycle and public transport facilities to support the proposal
- Immediately surrounding the site, some pathways and crossings within the established residential areas to the east of the site incorporate some 'missing links'. Therefore, as part of the future development application it is recommended to investigate with Council the opportunity to address and improve pathways and crossing facilities connecting to the site
- A review of similar operating facilities has been undertaken to derive the expected practical operating scale and frequency for the purpose of traffic generation and to identify what transport measures are required to support the proposal. It is appropriate to consider the day-to-day transport operations of the facility be addressed while also considering the traffic capacity limitations and context of the surrounding road network. The use of the site for larger more infrequent events would however be subject to additional event management planning, travel demand management, and other mitigation measures to ensure that the impacts are appropriately managed, but permanent infrastructure is proportionate to the site operations and also economically viable.
- While Council's Development Control Plan does include a parking rate for Recreation Facilities (outdoor) at a rate of 3 spaces per court, this parking rate has been acknowledged by Council as not representative to meeting the practical demands for the proposal and specifically netball courts. Therefore in response to Council's position, benchmarking of parking rates at similar sites was undertaken to determine a practical parking rate that has been applied by both Council and also other jurisdictions. Based on the review of the similar netball facilities and considering the sites established transport facilities and road network operations, a parking provision of approximately $\mathbf{2 5 6}$ car parking spaces ($\mathbf{8}$ spaces per outdoor court). is considered appropriate for the proposal and consistent with the operation of similar facilities throughout regional New South Wales and metropolitan Sydney. This parking provision would look to maximises the onsite parking to reduce impacts to the surrounding residents, while also managing the overall private vehicle trip generation accessing the site via Winbourne Street.
- Given the application relates to the Planning Proposal phase of the project, detailed parking layouts and associated internal transport components of the design are not yet defined. Therefore,
the detailed transport components, parking areas as well as any external traffic works would be subject to further traffic impact assessment as part of the development application stage.
- The development of a Green Travel Plan (GTP) to support the site and its operations would be expected to be conditioned following the development application stage. The GTP would outline strategies to reduce the dependency on private vehicles and encourages travel mode behaviour change towards more sustainable travel options such as cycling, walking, carpooling and public transport.
- The primary vehicular access is proposed to be via Winbourne Street, which remains consistent with the current high school site operations. A review of the traffic impacts associated with the proposal demonstrates that irrespective of the proposal, Winbourne Street / Marsden Road intersection is impacted by peak period queueing back from Victoria Road to the south. Line marking and signage works were undertaken in 2017 to help formalise peak period traffic movements and manage queuing. The operations of this intersection and surrounding road network are shown within survey data to manipulate traffic distribution and discourage right turn movements out of Winbourne Street. Specifically, only 13% of trips exiting Winbourne Street turn right onto Marsden Road, while 87\% exit left onto Marsden towards Victoria Road. This is an important factor for assessing the proposals likely traffic impacts to this intersection. When considering the road network operations and traffic generated by the proposal at this intersection, the road network will continue to operate in a similar manner with the inclusion of the proposal. Traffic modelling demonstrates that during both weekday peak period and weekend peak period operations of the Marsden Road / Winbourne Street intersection do not significantly worsen to a level that warrants additional mitigation measures to be imposed.
- The surrounding road network includes a combination of major road corridors including Victoria Road and Marsden Road. These roads and intersections experience major traffic volumes during peak periods and are expected to see traffic growth and congestion in future years. Notwithstanding the above, planned infrastructure works by both Council and TfNSW in the area are focussed towards public transport and active transport infrastructure over conventional road capacity upgrades.
- Given the site layout and frontage to Brush Road, it is likely that some parking and traffic will seek to access the site from the east via Brush Road. It is therefore recommended that mitigation measures be implemented on the surrounding streets and as part of operational planning for the facility. These measures may include but not limited to:
- Additional line marking and regulatory signage is installed to formalise parallel parking bays on Brush Road, maintain two-way traffic flow and ensure residents' driveways are not obstructed by visitors parking on street
- The facility's Transport Access Guide (TAG), Green Travel Plan (GTP) and any Event Traffic Management Plans should clearly outline designated parking areas within the facility along with any temporary off-site parking arrangements and alternates transport modes.
Based on the above assessment, it is concluded that the traffic, parking and transport impacts of the proposal can be appropriately managed to accommodate the proposed rezoning of the site. Detailed aspects of the site layout and traffic all associated transport infrastructure inclusions will be assessed and determined through an additional Traffic Impact Assessment to accompany the Development Application.

Appendix A: Council RFI and Responses

Item		Ptter Project Team Response	Council Response	Project Team Response Jan 2022
1	It is noted that additional information was submitted to Council on 5 October 2021. Preliminary assessment of the original and additional information has been undertaken which indicates that the proposed use will have significant impacts on the surrounding road and traffic network. Whilst some of these impacts may be addressed via the development application process, there are broader adverse road and traffic network impacts on the surrounding area that must be considered at this strategic, rezoning level.	It is agreed that the assessment of the most important transport impacts should be assessed as part of the planning proposal process. Some items can also be addressed either post- gateway or during the development application stage, such as where these are within the site footprint and part of the design optimisation process, (e.g. bicycle parking provision).	The scale and nature of the proposed development is such that appropriate infrastructure measures are needed within the surrounding public road network to adequately support the transport demands (e.g. vehicular traffic, cycling, walking, etc.) generated by the proposed development. As such, Council needs to ascertain from the traffic impact assessment what these infrastructure measures will be in order for the planning proposal to be endorsed by Council for referral to DPIE for Gateway Determination and subsequent public exhibition.	A peer review of the traffic and transport elements of the current Planning Proposal discussions has been carried out by Bitzios Traffic Consulting. The findings of their review are provided on a without prejudice basis for the purposes of discussing how each matter can be resolved to enable to the project to proceed. Bitzios agrees that the traffic and transport assessments to date do not yet provide sufficient certainty on the transport impacts and expected infrastructure upgrades to satisfy Council's requests. This is on the basis of various assumptions used within the assessments which are not yet validated against sufficient data sets. In addition, refinements to the expected operational assumptions would assist in Council understanding the facilities impacts on an average weekday or weekend versus major sporting events on the site which would occur at only a limited number of times per year and under additional event transport management planning overlays. Bitzios does however acknowledge that the planning proposal relates to the rezoning of the land only, rather than the specific approval of the proposed yield (i.e. 32 courts) or specific operational aspects of the facility that would impact and dictate the level of mitigation measures required to support the facility. In this regard, Bitzios also acknowledges that all operational aspects of the facility cannot be fully confirmed at this time and therefore should be based on similar operations and developed for a "potential use of the site" rather than a defined yield. The scale and nature of transport facilities associated with the proposal should be proportionate to its impacts and consider a series of scenarios of use for the site (i.e. small day-to-day communities use and larger regional events). A potential outcome of this scenario analysis is defining a set of transport measures (i.e. parking, traffic walking cycling, pick-up/drop-off facilities) to accommodate a level of development i.e. number of courts and operational treatments) for day-to-day community based use. Beyond that level of use, additional transport measures (i.e. event management planning, temporary overlay and transport initiatives) would be required to support the maximum use on the site (i.e. major events across the site for a limited duration and occurrence per year). It is therefore recommended that further traffic and transport assessments be refined based on additional data on the operational aspects of the facility (both day-to-day and major events) to inform and confirm an acceptable Planning Proposal outcome and subsequent DA. It is estimated that additional data collection and analysis to inform the development proposal would required around 4 weeks to undertake.
2		It is agreed that the site provides the minimum parking requirement stipulated by the Development Control Plan. It is noted that the indoor facility parking generation does compensate in some way for the lower parking provision per court. The calculation of 3 spaces per court doesn't take into account the parking supplied as part of the indoor facility. The total of 296 parking spaces is an average of eight parking spaces per court, assuming that spectators are drawn from those accompanying players to site. This is a vehicle occupancy of 2.5 players per vehicle, which is achievable with carpooling. Given that we have responded to the DCP rate and the associated parking generation issues to provide 296, we request Council confirm that the identified 320 parking spaces is the maximum required parking space target for the intended use. In consideration of the local community benefits of this project, we also request that Council advise if Council can provide (in part or full) any of the additional parking spaces above 296 within the vicinity of the site in order to		Bitzios considers that the parking rates and utilisation should be based on more representative data sets to determine the appropriate parking provision on site to ensure day-to-day operations do not result in adverse parking issues and are in line with the surrounding communities reasonable expectations. It is understood that given the Planning Proposal phase of the project, detailed surveys of parking utilisation, turn-over and duration of stay have not been undertaken on nearby or representative facilities. In addition, the collection of traffic and parking data has been hampered through 2020 and 2021 from COVID related impacts to sporting events and how people travel to and from these types of facilities. It is therefore unclear on the information provided what the current transport mode shares are expected for the facilities and how these may differ for various operational scenario (i.e. size to types of events) or days of the week. Following on from this, it is difficult to determine future changes in transport mode share as a result of potential initiatives the facility may introduce in order to manage parking impacts and external changes (i.e. development of Melrose Park) It is therefore recommended to undertake site reviews and surveys of nearby or comparable netball facilities to ground truth and refine parking rates for the facilities. This should also include consultation with operators regarding the scale of events and factors that may influence parking demands. These tasks would be undertaken as part of the data collection and analysis phase identified above (estimated at 4 weeks).
3	In the additional information submitted on 5 October, the traffic surveys were undertaken on Saturday, 13 February 2021 and Tuesday, 16 February 2021, during which COVID-19 restrictions were still in place. Comparing the 2019 SCATS and the 2021 traffic volume data for the intersection of Victoria Road and Marsden Road/Wharf Road for the weekday PM peak hour period (5 pm - 6pm), it is evident that the 2019 results are higher. The 2021 base traffic volumes for all surveyed intersections should be calibrated to the	The AADT Counter on Victoria Road (Station 51235) from 2021 shows that the weekly total trafic was 430,519 , Compared with a week in 2019 , this is similar. Most weeks in 2019 had a weekly trip total of between 417,000 $-435,000$. Hence the surveys conducted are considered to have a level of trafic similar to pre-COVID-19 conditions. Surveys were conducted at a time when there was no stay-at-home order in place. Can Council provide further information about why the survey is inappropriate given the similarity to pre-COVID in the weekly vehicle numbers?	Council has two sources of traffic counts, which show the peak hour traffic demands at the intersection of Victoria Rd/Marsden Rd/Wharf Rd to be higher than what has been adopted in the applicant's traffic modelling. As the modelling will also need to be reviewed by TfNSW, the accuracy of the traffic volumes modelled should also be verified by TfNSW.	Bitzios suggests that traffic surveys should be reviewed for particular time periods as opposed to being summarised for a full week. This is consistent with Council's request. Updates to the traffic modelling including base and project case is expected as part of the Development Application Phase and following confirmation of further site transport operations.
4	Further justification is required to be provided on the reduced traffic generation estimated for the weekday PM peak hour period	Advice from ERNA informed the assumptions regarding timing of games and scale of operations during the weekday evening peak.	Surveys should be conducted and included in the traffic impact assessment for existing operations at other similar facilities in Sydney to remove doubt regarding the assumptions. The probability of overlapping matches/training sessions, etc also needs	Bitzios generally agrees with Council regarding the refinement of assumptions to traffic generation in line with the responses above. The extent of traffic analysis should and defining of upgrades should however be proportionate to application at hand. As mentioned above, it is understood that the analysis is based on a potential development proposal that may be subject to change in scale and operations.
5	Why was outbound traffic not considered for the weekday PM peak period to account for overlap between potential games/training sessions starting and finishing concurrently? Why was the traffic potentially generated by the four (4) indoor courts not considered?	From an operational perspective, the major game events occur on a weekend. This is because night games tend to be associated with a smaller netball demographic - late high school and adults. In contrast, the weekend games draw from all ages including primary and early high school.	to be considered.	

6		This approach is for the purpose of consistency of inputs and outputs and is standard traffic modelling practice when producing models for TfNSW. This will be raised with TfNSW at a future meeting. Traffic surveys count the number of vehicles that make it through the intersection during the survey period. Degree of saturation is the measure of throughput divided by capacity. A measure of greater than 1.0 indicates that the intersection could not service the full volume. Hence if the SIDRA indicates that the degree of saturation exceeds 1.0, then this is inconsistent with the inputs (being completed turning	Council does not agree with the response as it has not addressed the fact that the modelling has assumed the intersection of Victoria Rd/Marsden Rd/Wharf Rd has spare capacity when this may not be the case. The modelling should be discussed further with TfNSW.	Work undertaken on the intersection previously for the City of Ryde indicates that the intersection will operate at a degree of saturation around 1.0 irrespective of the inclusion of the Planning Proposal, which indicates that the intersection is anticipated to be at capacity in future year scenarios. Further information regarding the intersection operations (i.e. queue lengths, peak times, delays and operational aspects) should be provided to qualify the current operations. From there, the development's traffic analysis needs to quantify the net impact as a result of the proposal during both background and site peak. No details have been provided on the catchment or distribution of the developments traffic. It is however reasonable to expect that the grid nature of the surrounding road network and local catchment of the facility would allow for development traffic to utilise other routes around congested intersections. It is reasonable for Council to request targeted analysis as part of future DAs to address identified concern locations in proximity to the site.
7	It is understood that at this stage there are no formal plans for the upgrade of the intersection of Victoria Rd and Marsden Rd/Wharf Rd under the arrangement depicted in Figure 1 of supplementary traffic statement, being an extract of the Jacobs' TMAP. As such, it is likely that the proposed development (if approved) would be operational before any long-term infrastructure measures outlined in Jacobs' TMAP has been implemented. In this regard, it is advised that the traffic modelling for the 2031 scenarios be updated based on the current layout of the intersection of Victoria Rd and Marsden layout of the intersection of Victoria Rd and Marsden	The upgrade of Victoria Road / Marsden Road / Wharf Road is part of the staging plan of Melrose Park TMAP page 122 (extract below). The upgrade is triggered when 1,100 dwellings are provided. It would be unreasonable for traffic modelling to include the growth relating to the development of Melrose Park but not the infrastructure staging. It would result in the proponent becoming responsible for impacts that are separate to the subject site.	It is understood that there are no committed plans for the upgrade of the intersection of the rapid progress of the construction of the Payce development. Therefore, it is not unreasonable to assume the proposed recreational development will be delivered prior to any potential works being undertaken at the intersection of Victoria Rd/Marsden Rd/Wharf Rd associated with the Payce development. The applicant should seek advice from Parramatta City Council and TfNSW in relation to the timing and scope of works committed for the intersection of Victoria Rd/Marsden Rd/Wharf Rd.	
${ }^{8}$		Either the growth of Melrose Park should be assessed with their proposed infrastructure schedule or Melrose Park should be excluded from the future growth.		
9	It is clear from Council's assessment to date that the zone, being the proposed netball facility, will have adverse impacts on the capacity and operation of the surrounding road network. On the information available it remains unclear whether this impact can be accommodated by the available network. In particular, Council is seeking sufficient information relating to traffic impacts to be able to ascertain whether upgrades to intersections (such as and upgrade of Victoria Road and/or an upgrade of Marsden Road/Wharf Road) may be required earlier than currently planned to support any rezoning.	The traffic modelling indicated that the upgrade of Victoria Road / Marsden Road / Wharf Road was not required as a result of the development. Further modelling will be undertaken to evaluate whether without this upgrade and with a capped growth in Melrose Park, the network can accommodate the additional traffic. The suggested way forward is that traffic modelling is updated to evaluate this.	Noted. Background traffic growth should be based on TNNSW's STFM data.	It is noted that the STFM is a link based strategic model and does not include intersection penalties. Therefore, the outputs from the STFM are demand flows not actual flows that can be catered for by the intersection. The traffic assessment therefore needs to consider forecast growth at each intersection in context of the model limitation and practical on-site conditions.
10	In order to minimise the potential spillover of parking onto the surrounding public roads and to encourage more people to travel to the site by active transport and reduce the potential traffic impacts, additional measures should be considered at the planning proposal stage, as without such measures Council does not consider that the site is suitable for rezoning for the	As noted above, it is agreed that the assessment of the Planning Proposal include consideration of additional measures, as discussed in turn below. Car parking matters are discussed above. Transport matters are discussed further below.	See above comments in relation to parking and comments below.	Bitzios is of the view that based on further analysis of the proposal as well as other representative sites, a balance can be achieved for parking on site to meet the day-to-day needs of the facility and manage external parking impacts in line with the communities reasonable expectations. To do this, a series of further rrafic assessments are required (either through the Planning Proposal phase or Development Application Phases) to assess various event scenarios or scale of activity over the site and development transport options for each.
11	Some additional measures for consideration may include, but not be limited to, the following: - Adequate end of trip facilities (e.g. bicycle racks, showers, lockers, etc.) provided on site in accordance with the NSW Government's Planning Guidelines for Walking and Cycling.	NSW Government's Planning Guidelines for Walking and Cycling is no longer on a NSW Government website, indicating that it is no longer in force. Are there particular sections or requests that Council is looking to achieve from this guidance document? As a netball facility, there are extensive end of trip facilities for players (showers and change rooms). There are nine showers including one DDA shower. Two of these are dedicated to umpires. Bicycle parking is being included as part of the current	Guidelines to be provided by Council. There should be appropriate numbers of end-of trip facilities (e.g. bicycle racks/lockers) provided on site as well as active transport improvements within surrounding public roads to support a greater mode shift towards cycling and walking to the site, which will assist in reducing private vehicle traffic and parking demand.	Active transport facilities will be a key aspect of the site's transport system and recommended to be incorporated as part of all scenarios of events. Further detailed analysis is required in consultation with stakeholders to determine the walk and cycle catchments for the facility as wel as achievable mode share targets and associated strategies.
12	- A shared use (pedestrian and cycle) path be provided along the eastern side of Winbourne St between Marsden Road and Hermoyne St. \qquad	This could be confirmed post-Gateway Determination of the planning proposal. It is noted that half of the route already has a generous footpath that could be line marked/signposted as a shared zone.	Noted. Council would anticipate conditioning in a future approval the provision of the path.	As per above, updates to surrounding active transport facilities including pathways or 'missing links' should be based on walk-up catchment analysis of the facility and the site's pedestrian desire lines. A nexus should be defined between the proposed facilities transport needs and any infrastructure upgrades that are imposed.
13	- Appropriate full pedestrian crossing facilities across Brush Rd.	This could be confirmed post-Gateway Determination of the planning proposal.	Noted. Council would anticipate conditioning in a future approval the provision of the crossing.	
14	- Surrounding intersection upgrades be brought forward as a result of the proposed development	This could be confirmed post-Gateway Determination of the planning proposal. SINSW is delivering community facilities and does not incur a development margin that assists with the delivery of public transport infrastructure In general, the netball courts would not be busy at the times of peak demand on the transport network, meaning there will typically be spare capacity in the network. Traffic modelling should be the primary means of determining whether	See above comments relating to the traffic modelling. The traffic assessment needs to demonstrate that the traffic issues detailed in the RFIs can be resolved prior to the planning proposal being endorsed for public exhibition. There is no point progressing the planning proposal further if it cannot be demonstrated that the netball facility will be supported by necessary infrastructure.	As per above, traffic analysis and mitigation measures should be refined based on confirmed operational requirements of the proposal and traffic modelling outcomes. This should include a review of background peak and project peak assessments. Given the variables associated with the operational impact of the proposal, it is considered premature to condition such works at this time.

15	The proposed netball facility has the potential to be a valuable community asset to West Ryde and the surrounding community. However, such a community asset should also be supported by commensurate supporting infrastructure so that the communuity amenity is maintained and improved. It is concerning that the information provided with the planning proposal has been minimal and there seems to be a reluctance to provide the appropriate level of information that will enable the assessment of this important facilitity y its strategic merit and in accordance with legislative requirements.	The level of detail is fairly typical for an initial tran assessment. The RFI process and the Gateway Determination typically reveal the key issues that can then be assessed in further detail. It is noted that the project development process has coincided with COVID-19, which has impacted the ability mentioned above, the 2019 and 2021 traffic data appear comparable and is considered to be appropriate for the purposes of this assessment.	A full rather than 'initial' transport assessment should be provided for consideration prior to Council considering referring the planning proposal for Gateway Determination The assessment needs to demonstrate that the traffic issues detailed in the RFIs can be resolved prior to the planning proposal being endorsed for public exhibition. There is no point progressing the planning proposal further if it cannot be demonstrated that the netball facility will be supported by necessary infrastructure.	Bitzios is of the view that refinements to the proposals transport assessment can be undertaken to provide sufficient confidence to Council for the Planning Proposal phase. It is clear however that not all aspect of the final development over the site can be locked in at this time and a series of caveats, limitations and requirements may be imposed subject to further Traffic Impact Assessments as part of future DA's.
16	$\begin{aligned} & \text { The above comments are raised for your } \\ & \text { consideration and Council recommends that we meet } \\ & \text { to discuss a way forward with the proposal. I will be } \end{aligned}$ seeking the assistance of Mr Kavanagh and Mr	Having regard to the above responses, SINSW agrees that a meeting is required to discuss a way forward.	Noted.	

Appendix B: Traffic Volume Data

Approach											de																			Vitoria																			
${ }^{\text {Direction }}$	$\substack{\text { diection）} \\ \text { leferum）}}$					$\substack{\text { direction } \\ \text {（Throut）}}$										Directiong					$\substack{\text { Diection } 10 \\ \text { ieftum）}}$					Dinectio 11					Direcio 12					Dinectio 120													
Time Period	总			䇒	㐫	㟺			$\frac{\frac{2}{8}}{\frac{2}{8}}$	京	号			$\frac{2}{3}$	京	實			颜	㐫	緟				产				旁	京	䐴				京	嫑			$\frac{\frac{2}{8}}{}$	家	${ }_{\text {Btoa }}$ A	108	otoc	${ }_{\text {cose }}$		tof			咅
	${ }_{38}$			－	33	${ }_{4}$	－	．	－	9	${ }^{7}$	，	－	－	200		，	．	－	\bigcirc	96			－	\％	2，999	2	－	\bigcirc	1，94	5																		
$\begin{array}{llll}2.15 & 10 & 815\end{array}$	331	，	1	－	$3{ }^{3 n}$	2	－	－	－	2	${ }^{16}$	－	－	－	124	。	－	－	－	－	${ }^{10}$	－ 2		－	${ }^{13}$	${ }_{1293}$	\because	10	－	1，94	5	10	。	－	6	－	。	－		－	${ }^{34}$	10	${ }_{3}$	${ }^{13}$	1	12	。		
$\begin{array}{lllll}730 & 10 & 830\end{array}$		6	1		${ }_{3}{ }^{3}$			－		${ }^{10}$	${ }^{128}$	－	－	－	${ }^{136}$		－	－	－	－			1	－	${ }^{13}$			10	－	203			1		n														
	40	－	1	－	${ }_{40} 0$	121	2	－	1	${ }^{124}$	${ }^{13}$	，	－	－	180	。	。	－	－	－	${ }_{173}$	3	。	－	${ }_{175}$	${ }_{\text {ises }}$	${ }^{101}$	5	－	2，94	5	${ }^{13}$	1	。	3	－	－	－	－	－	${ }_{7}$	12	${ }^{25}$	18	3	${ }^{28}$	－	－	
	${ }_{46}$	－	－	－	42	130	2	－	1	${ }^{13}$	${ }^{193}$	，	－	－	200	1	－	－	－	1	204	2	1	－	27	${ }_{1}^{138}$	10	5		2，95	${ }^{6}$	17		－		－							15		8				
AM Totas	${ }^{79}$	15	1	\bigcirc	${ }^{315}$	28	2	\bigcirc	1	${ }^{27}$	230	10	\bigcirc	\bigcirc	300	1	\bigcirc	\bigcirc	\bigcirc	1	300	0	2	－	${ }^{66}$	3，688	${ }^{13}$	${ }^{18}$	－	3，89	${ }^{13}$	${ }^{2}$	2	1	${ }^{35}$	－	－	－	－	－	${ }^{128}$	${ }^{17}$	${ }^{11}$	${ }^{25}$	－	${ }^{6}$	－	－	
15.5000	23	＇	\bigcirc	\bigcirc	${ }^{29}$	${ }^{7}$	4	1	\bigcirc	8	129	－	\bigcirc	\bigcirc	${ }^{18}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	109	5	\bigcirc	－	${ }^{109}$	${ }^{1,02}$	55	3	\bigcirc	2.40	${ }^{1}$	5	1	－	＂	\bigcirc	\bigcirc	\bigcirc		－	1	－	${ }^{2}$		9	16	－		
$\begin{array}{llll}515 & 10 & 16.5\end{array}$	${ }^{278}$	－	－	－	${ }^{27}$	12	3	1	－	${ }^{6}$	134	${ }^{11}$	－	－	${ }^{145}$	。	－	－	－	－	${ }^{87}$	6	－	－	3	1．566	so	2	－	L，588	${ }^{76}$	3	1		－	－	－	－					19		34				
1530 to 1630		11	－	－	27	75	2	1	－	${ }^{18}$	${ }^{11}$	${ }^{10}$	－	－	124	。	－	－	－	－	88		－	－	${ }^{5}$	1．556	${ }^{3}$	－	－	1.598	${ }_{8}$	5	－	－	${ }_{3}$	－	－	－		－	10	${ }^{13}$	14		16	12			
（1545	${ }^{24}$	10	－	－	24	7	1	1	－	8	${ }_{14}$	6	－	－	120	－	－	－	－	－	82	${ }^{4}$	。	－	${ }_{5}$	1.64	40	1	－	1，655	${ }^{15}$	${ }_{6}$	－	－	8	－	－	－	－	\bigcirc		10	${ }_{17}$	S	10	，	－	－	
$\begin{array}{lllll}1500 & 10 & 1720\end{array}$			－	－	23	${ }_{5}$	2	－	－	＂	${ }^{108}$	3	－	－	m	－	。	－		－					\％	2，76		2	－	2，78		5	－		\because	－	。	－				－	16						
	20	2	－	－	27	${ }^{1}$	2	－	－	${ }_{3}$	${ }^{103}$	${ }^{3}$	－	－	${ }^{106}$	－	－	－	－	－	${ }_{9}$	${ }^{3}$	－		\square	1，78	${ }_{24}$	2	－	2，74	${ }_{0}$	5	－	－	5	－	－	－		\bigcirc		3	${ }^{18}$	${ }^{1}$	5	，	。		
${ }^{1538}$	29	－	－	－	${ }^{29}$	8	2	－	－	2	${ }^{12}$	3	－	－	${ }^{24}$			－	－	－	－	2	－	－	9	1.807	26	2		2.35	${ }^{6}$	3	－		${ }^{8}$	－		－			10	3	25	15	5				
	29	1	－	－	25	${ }_{87}$	2	－	－	${ }^{8}$	${ }^{128}$	2	－	－	130	。		－	－	．		${ }^{3}$	－		101	1880	28	2	－	1.96	${ }^{8}$	2	－	－	3	－	－	－		－	${ }^{11}$	4	26	15	6	5	－		
	22	1	－	－	23	$\%$	1	－	－	\because	12	${ }^{3}$	－	－	${ }^{155}$	。	。	－		－			。		3		30		\bigcirc	1，92	${ }^{8}$		－		3	－	－	－			10	4	29	15	－	－	－		${ }^{7}$
PM Toals																	。			\div	23	${ }^{10}$	。			5，as	us																						

MATRIX

Approach										Marsde	en Rd																			victor	ria										${ }_{\substack{\text { crossing } \\ \text { Pedestrans }}}^{\text {chen }}$								
Direction	$\substack{\text { Dinection } \\ \text {（leftur）}}$															Dinectio gu					$\substack{\text { Directio } 10 \\ \text { Ueftrum）}}$					$\substack{\text { Directio } 11 \\ \text { Throust）}}$					Dinectio 12					$\underbrace{\text { Dinection }}$（12U）													
Time Period	总			妾	咅	䲞			旁	产				$\frac{\frac{2}{z}}{}$	咅	管			$\frac{3_{8}}{}$	咅				$\frac{\frac{2}{z}}{}$	立	号			$\frac{\frac{y}{z}}{}$	들	皟	$\begin{array}{\|l\|l} \hline \frac{0}{3} \\ \text { in } \\ \text { in } \\ \hline \end{array}$		$\frac{z_{3}}{\text { b }}$	咅				$\frac{y_{3}}{\text { z }}$	亯	toa	to 8	toc	ctoo	ftoe	Etof			豆
${ }_{830}$ to 8.15	6	0	\bigcirc	－	6	，	\bigcirc	0	－	，	${ }^{10}$	1	\bigcirc	－	－	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc		－	－		${ }^{11}$	${ }^{3}$	\bigcirc		${ }^{13}$	1	\bigcirc	－	${ }^{14}$	－	\bigcirc		0	－		\bigcirc	2	\bigcirc	1	\bigcirc	\bigcirc		
88.5 to 830	＂	2	－	－	${ }^{7}$	8	1	－	\bigcirc	，	${ }^{16}$	1	－	－	${ }^{17}$	－	－	－	－	－	，	2	－	－	${ }^{11}$	230	${ }^{14}$	3	－	27	6	－	－	－	6	－	\bigcirc	－	－	－	－	－	1	1	－	1	－	－	
$\begin{array}{llll}830 & 10 & 845\end{array}$	${ }_{85}$	2	－	－	${ }_{87}$	，	－	－	－	，	19	－	－	－	19	－	－	－	－	\bigcirc	${ }^{17}$	－	－	－	${ }^{17}$	316	15	1	－	332	8	－	－	－	－	－	－	－	－	－	－	－	－	－	1		－	－	
845 to 9.00 8	＂	4	－	－	75	${ }^{14}$	－	－	－	${ }^{14}$	12	－	－	－	12	－	－	－	－	\bigcirc	23	－	－	－	${ }^{23}$	${ }^{32}$	12	－	－	${ }_{33}$	，	1	－	－	8	－	－	－	－	－	－	1	－	－	1	1	－	－	
9．00			－	－	${ }^{86}$		－	－		${ }^{14}$			－		${ }^{24}$			－		\bigcirc		－	－		${ }^{17}$	${ }^{29}$		1			10		\bigcirc		10	－	\bigcirc	－		\bigcirc		1	2	－	1		－	－	
9，15 to 930	${ }_{81}$	－	－	－	${ }^{81}$	15	－	－	－	15	28	－	－	－	${ }^{28}$	－	－	－	－	－	20	1	－	－	${ }^{2}$	${ }_{37}$	12	－	－	39	${ }_{16}$	2	－	－	${ }^{18}$	－	－	－	－	－	2	1	4	2	1	2	－	－	
${ }_{930}$［10 9.45	${ }_{9}$	－	－	－	${ }_{9}$	${ }^{14}$	－	－	－	${ }^{14}$	${ }^{25}$	3	－	－	${ }^{28}$	－	－	－	－	－	12	－	－	－	12	${ }_{36} 9$	－	2	－	${ }^{37}$	15	2	－	－	${ }^{17}$	－	－	－	－	－	1	－	3	1	－	1	－	。	
945	97	2	－	－	9	15	－	－	－	15	19	\bigcirc	－	－	19	－	－	\bigcirc	－	－	15	1	－	－	16	${ }^{32}$	，	－	－	${ }_{36}$	17	1	1	－	19	－	－	－	－	\bigcirc	2	－	－	1	－	3	－	－	
10.00 to 10.15	${ }_{87}$	－	－	－	${ }^{87}$	15	－	－	－	－	${ }^{22}$	1	－	－	23	－	－	－	－	\bigcirc	22	1	－	－	${ }^{23}$	32	8	\bigcirc	－	330	${ }_{2} 4$	－	\bigcirc	－	${ }^{24}$	－	\bigcirc	－	－	\bigcirc	－	1	3	2	－	－	－	－	
$\begin{array}{llll}20.15 & \text { to } 10.30\end{array}$	${ }_{9}$	1	－	－	${ }^{5}$	${ }^{28}$	1	－	－	29	27	－	－	－	27	－	－	－	－	－	${ }^{16}$	－	－	－	${ }^{16}$	${ }_{36}$	，	1	－	346	20	－	－	－	20	－	－	－	－	－	3	1	－	1	－	2	－		
1230 to 10.45	7	1	－	\bigcirc	80	25	－	－	－	25	2	1	－	－	30	－	－	－	－	－	26	－	－	－	${ }^{26}$	${ }_{31} 3$	12	1	－	34	30	－	－	－	${ }^{30}$	－	－	－	－	－	－	1	2	2	2	1	－	－	
12.45 to 11.00	9	－	－	－	，	26	－	－	－	26	22	1	－	－	23	－	－	－	－	－	26	2	－			${ }_{32}$	，	2	－	${ }_{31}$	16	－	－	－		－	－	－		－		3			－	－			
11．00 611.145	＂	－	－	－	＂	${ }^{24}$	－	－	－	${ }^{24}$	${ }^{23}$	－	－	－	23	－	－	－	－	－	${ }^{30}$	1	－	－	${ }^{3}$	33	，	－	－	32	${ }^{3}$	2	1	－	${ }^{36}$	－	－	－	－	\bigcirc	－	1	1	6	－	－	－	－	
11.15 to 1130	${ }^{0}$	－	－	－	0	${ }^{12}$	－	－	－	12	32	－	－	－	32	－	－	－	－	\bigcirc	27	1	－	－	${ }^{28}$	325	12	－	－	${ }_{37}$	32	－	－	－	32	－	－	－	－	－	1	1	4	3	1	2	－	。	
11330 to 11．45	${ }^{5}$	1	－	－	76	${ }^{24}$	1	－	－	2	${ }_{3}$	1	－	－	${ }^{39}$	－	－	－	－	－	${ }^{24}$	－	－	－	${ }^{24}$	${ }_{31}$	8	－	－	339	22	3	－	－	25	－	－	－	－	－	3	1	－	1	3	－	－	－	
1145 to 12.00	${ }_{8}$	1	－	－	－	17	－	－	－	${ }^{17}$	32	－	－	－	2	－	－	－	－	\bigcirc	${ }^{35}$	－	－	－	5	32	，	－	－	361	30	2	－	－	32	－	－	－	－	\bigcirc	2	1	6	4	2	2	－	－	
$\begin{array}{lllll}1200 & 10 & 2.25\end{array}$	${ }_{84}$	1	－	－	${ }^{25}$	20	－	－	－	－	${ }^{3}$	－	－	－	${ }^{3}$	－	－	－	－	\bigcirc	22	－	－	－	22	380	4	－	－	384	30	1	－	－	31	－	－	－	－	－	2	－	，	－	3	2	－	－	
12.15 to 1230	60	2	－	－	${ }^{\circ}$	20	－	－	－	20	26	－	－	－	${ }^{26}$	－	－	－	－	－	22	1	－	－	${ }^{23}$	${ }^{37}$	5	1	－	379	${ }_{34}$	－	－	－	4	－	－	－	－	－	1	4	2	2	－	4	－	－	
1230 to 12.45	70	1	－	－	n	34	1	－	－	${ }_{3}$	${ }^{33}$	，	－	－	${ }^{34}$	－	－	－	－	－	17	－	－	－	${ }^{17}$	${ }_{35}$	7	－	－	358	${ }^{27}$	1	－	－	28	－	－	－	－	－	3	－	4	3	2	2	－	－	
1245 \％ 1300	7	\bigcirc	－	－	7	2	\bigcirc	－	－	2	34	1	\bigcirc	－	${ }^{5}$	－	－	－	－	\bigcirc	19	－	－	－	19	297	7	\bigcirc	－	394	29	－	\bigcirc	－	2	－	－	－	－	－	1	2	3	3	2	1	－	－	
Total					2，965					36					515						${ }^{208}$	10			418	6，605	${ }^{183}$			6，895	49	${ }^{16}$			437														${ }_{188}$


```
lob No. :AUNSW3220
Location :1.Winbournest/Marsden Rd
Wayvother
Wescription \begin{tabular}{l} 
Stat 12 th Mar 2022 \\
fine \\
\hline
\end{tabular} : Fine
. 15 mins oata
```


MATRIX

MATRLX

${ }^{\text {Approsech }}$	Massenend													Winbumest														
${ }^{\text {Dinection }}$	（intaion				come				Sticeme					（inestion						（inestion				Dinction（tum				
Tmeereiod				岩	鬲			를	量			$\frac{\frac{2}{8}}{}$	产					할									$\frac{\frac{2}{8}}{8}$	＂
	${ }_{2}$	\％	：	${ }_{20}^{23}$	${ }_{2}$	\％	－		－	－	：	－	－	S	：	－		5		\because	：	\bigcirc	！			．		
	20			2n				－	${ }^{2}$	－	－	－	2	\％		\bigcirc		0					\because		－	！		
	${ }_{2}^{28}$	3		${ }_{20}^{20}$	${ }^{36}$	10	：	＂	\because	：	：	\bigcirc	\bigcirc	0		：	\bigcirc	＂		3	\bigcirc	－	\because	：	：	\bigcirc		
	3	3		$3{ }^{3}$				${ }^{\circ}$	${ }^{1}$	1	－	－			2	－							S					
（1）		$: 1$		320				${ }^{6}$	12	1	\bigcirc		\％	${ }^{5}$	1	\bigcirc						－	：		：	\bigcirc		
	318	？		3m			：	4	${ }^{10}$	：	！	\bigcirc	号	${ }_{8}^{8}$		\bigcirc	：			？	\bigcirc	－	，	！		！		\div
${ }^{205} 510 \mathrm{~mm}$	38			$3 m$					${ }^{1}$	．	－		B	－		－					－ 0							
\％ear	${ }^{30}$	－		3	－			\cdots	10	－	\bigcirc		${ }^{10}$	\％	2	－		\％		${ }^{3}$	\bigcirc	$\bigcirc \bigcirc$	－		－			
		＇	：	${ }_{46}^{48}$		1	！	\％	B	！	！	\bigcirc	品	\％		\bigcirc	：			17	\bigcirc	－			：			
	${ }^{41}$	S	－	${ }_{\text {as }}$	S	$1!$		3	${ }^{2}$	．	－	\％	号	\％	1	－		20		，	\div	！	${ }^{8}$		！			
120060820	${ }^{20}$	20		${ }^{27}$	－	10		\because	${ }^{4}$		－		4			－		\cdots		20			20					
		：	：			10		\％	${ }^{13}$	！	！		：	\％		\because	\because			${ }_{1}$	\bigcirc	－	${ }^{15}$			\bigcirc		
Toat	1，512																											

MATRIX

Client	Bitzios Consulting	Marsden Rd $\begin{array}{l:l} & \\ \text { L2 } & \text { L1 }\end{array}$	
Location	1. Winbourne St / Marsden Rd		
Date	Wed, 9th Mar 2022		
Survey Time	7:00-9:00 \& 15:00-18:00 (5hrs)		
Description	Queue Length Survey		
		LL $\mathrm{L2}$ Marsden Rd	

AM		$\begin{aligned} & \text { South Leg } \\ & \text { (Marsden Rd) } \end{aligned}$		East Leg (Winbourne St)		North Leg(Marsden Rd)	
		Lane 1	Lane 2	Lane 1	Lane 2	Lane 1	Lane 2
7:00	to 7:05	0	1	1	0	12	0
7:05	to 7:10	0	1	0	1	0	0
7:10	to 7:15	0	1	1	0	0	0
7:15	to 7:20	0	1	1	1	3	0
7:20	to 7:25	0	1	1	0	1	0
7:25	to 7:30	0	2	2	0	5	0
7:30	to 7:35	0	1	2	0	0	0
7:35	to 7:40	0	1	2	1	4	0
7:40	to 7:45	0	2	2	1	0	0
7:45	to 7:50	0	1	2	0	0	0
7:50	to 7:55	0	5	2	1	7	0
7:55	to 8:00	0	2	2	1	5	0
8:00	to 8:05	0	2	3	1	4	0
8:05	to 8:10	0	2	1	1	0	0
8:10	to 8:15	0	3	1	1	9	0
8:15	to 8:20	0	2	2	1	4	0
8:20	to 8:25	0	2	2	0	4	0
8:25	to 8:30	0	5	4	1	10	0
8:30	to 8:35	0	3	9	1	11	0
8:35	to 8:40	0	5	12	1	17	0
8:40	to 8:45	0	4	13	2	17	0
8:45	to 8:50	0	5	15	12	17	0
8:50	to 8:55	0	4	17	13	4	2
8:55	to 9:00	0	2	17	1	17	2
MAX		0	5	17	13	17	2
MIN		0	1	0	0	0	0

PM	South Leg (Marsden Rd)		East Leg (Winbourne St)		$\begin{gathered} \text { North Leg } \\ \text { (Marsden Rd) } \end{gathered}$	
	Lane 1	Lane 2	Lane 1	Lane 2	Lane 1	Lane 2
15:00 to 15:05	0	3	3	1	0	0
15:05 to 15:10	0	3	11	4	0	1
15:10 to $15: 15$	0	1	17	2	3	1
15:15 to 15:20	0	1	7	1	0	0
15:20 to 15:25	0	1	2	2	0	0
15:25 to 15:30	0	3	2	0	4	0
15:30 to 15:35	0	1	1	1	0	0
15:35 to 15:40	0	1	1	4	0	0
15:40 to 15:45	0	2	2	0	0	0
15:45 to 15:50	0	3	0	1	1	0
15:50 to 15:55	0	1	1	1	0	0
15:55 to 16:00	0	1	2	1	0	0
16:00 to 16:05	0	2	4	0	2	0
16:05 to 16:10	0	1	1	0	0	0
16:10 to $16: 15$	0	2	1	1	0	0
16:15 to $16: 20$	0	1	0	1	0	0
16:20 to 16:25	0	1	1	0	0	0
16:25 to 16:30	0	1	1	1	2	0
16:30 to 16:35	0	1	1	0	0	0
16:35 to 16:40	0	1	1	0	0	0
16:40 to 16:45	0	1	2	2	0	0
16:45 to 16:50	0	0	1	1	0	0
16:50 to $16: 55$	0	1	1	1	0	0
16:55 to 17:00	0	1	1	1	0	0
17:00 to 17:05	0	1	0	1	0	0
17:05 to 17:10	0	2	2	2	0	0
17:10 to 17:15	0	2	2	2	0	0
17:15 to 17:20	0	2	1	1	0	0
17:20 to 17:25	0	1	4	1	8	0
17:25 to 17:30	0	2	1	0	0	0
17:30 to 17:35	0	4	1	1	0	0
17:35 to 17:40	0	2	2	1	1	0
17:40 to 17:45	0	1	3	2	0	0
17:45 to 17:50	0	2	2	1	1	0
17:50 to 17:55	0	2	2	0	0	0
17:55 to 18:00	0	1	1	1	0	0
MAX	0	4	17	4	8	1
MIN	0	0	0	0	0	0

Time	South Leg (Marsden Rd)		East Leg (Winbourne St)		North Leg (Marsden Rd)	
	Lane 1	Lane 2	Lane 1	Lane 2	Lane 1	Lane 2
8:00 to 8:05	0	0	0	0	0	0
8:05 to 8:10	0	0	1	1	0	0
8:10 to $8: 15$	0	0	0	0	0	0
8:15 to 8:20	0	0	0	1	6	0
8:20 to 8:25	0	0	2	1	4	0
8:25 to 8:30	0	1	1	0	1	0
8:30 to $8: 35$	0	1	1	0	0	0
8:35 to 8:40	0	0	2	0	0	0
8:40 to 8:45	0	1	1	1	5	0
8:45 to 8:50	0	0	1	1	3	0
8:50 to 8:55	0	1	1	0	0	0
8:55 to 9:00	0	1	2	0	6	0
9:00 to 9:05	0	1	1	0	2	0
9:05 to 9:10	0	1	2	0	5	0
9:10 to 9:15	0	1	1	0	9	0
9:15 to 9:20	0	4	2	0	0	0
9:20 to 9:25	0	2	1	0	0	0
9:25 to 9:30	0	1	2	0	6	0
9:30 to 9:35	0	1	2	1	1	0
9:35 to 9:40	0	0	1	0	1	0
9:40 to 9:45	0	1	0	0	1	0
9:45 to 9:50	0	1	2	1	5	0
9:50 to 9:55	0	1	1	1	2	0
9:55 to 10:00	0	2	1	0	0	0
10:00 to 10:05	0	1	1	0	0	0
10:05 to 10:10	0	1	1	1	2	0
10:10 to 10:15	0	1	1	1	0	0
10:15 to 10:20	0	2	0	0	5	0
10:20 to 10:25	0	1	1	0	3	0
10:25 to 10:30	0	1	0	0	0	0
10:30 to 10:35	0	1	2	1	0	0
10:35 to 10:40	0	2	2	1	2	0
10:40 to 10:45	0	0	1	0	0	0
10:45 to 10:50	0	1	1	1	2	0
10:50 to 10:55	0	2	1	1	4	0
10:55 to 11:00	0	1	1	0	2	0
11:00 to 11:05	0	2	1	1	0	0
11:05 to 11:10	0	1	1	0	1	0
11:10 to 11:15	0	1	0	0	0	0
11:15 to 11:20	0	1	2	1	3	1
11:20 to 11:25	0	1	1	1	4	0
11:25 to 11:30	0	2	0	1	0	1
11:30 to 11:35	0	1	2	0	3	0
11:35 to 11:40	0	1	2	2	0	0
11:40 to 11:45	0	1	3	1	0	0
11:45 to 11:50	0	1	2	1	5	0
11:50 to 11:55	0	2	1	1	4	0
11:55 to 12:00	0	1	1	1	6	0
12:00 to 12:05	0	1	1	1	5	0
12:05 to 12:10	0	2	1	0	10	0
12:10 to 12:15	0	1	1	1	1	0
12:15 to 12:20	0	0	0	0	1	0
12:20 to 12:25	0	2	1	1	0	0
12:25 to 12:30	0	1	2	2	3	0
12:30 to 12:35	0	2	3	1	3	0
12:35 to 12:40	0	1	2	0	0	0
12:40 to 12:45	0	1	1	0	0	0
12:45 to 12:50	0	1	1	0	0	0
12:50 to 12:55	0	1	1	1	0	0
12:55 to 13:00	0	1	1	1	0	0
MAX	0	4	3	2	10	1
MIN	0	0	0	0	0	0

Job No	AUNSW3220	
Client	Bitzios	
Site	Winbourne Street	
Location	between Farnell Street and Marsden Road	
Site No	2	
Start Date	9-Mar-22	
Description	Volume Summary	
Direction	Combined	

Hour Starting	Day of Week							W'Day Ave 2711	7 Day Ave 2382
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	14-Mar	15-Mar	9-Mar	10-Mar	11-Mar	12-Mar	13-Mar		
AM Peak	480	478	489	510	543	138	129		
PM Peak	293	250	320	297	329	149	111		
0:00	5	11	7	6	4	18	28	7	11
1:00	7	4	4	2	7	9	14	5	7
2:00	3	2	2	2	4	14	5	3	5
3:00	5	4	7	4	5	4	6	5	5
4:00	7	5	7	6	5	5	7	6	6
5:00	30	21	26	27	22	15	4	25	21
6:00	56	54	49	46	56	27	12	52	43
7:00	135	130	183	150	160	38	39	152	119
8:00	480	478	489	510	543	58	63	500	374
9:00	205	206	205	226	184	133	100	205	180
10:00	131	98	102	100	104	129	116	107	111
11:00	118	109	102	99	114	138	129	108	116
12:00	90	137	104	115	99	149	109	109	115
13:00	96	130	92	91	123	132	99	106	109
14:00	217	250	201	190	197	103	111	211	181
15:00	293	207	320	297	329	95	82	289	232
16:00	160	178	194	200	199	132	89	186	165
17:00	186	217	236	214	222	124	81	215	183
18:00	137	183	149	169	163	99	80	160	140
19:00	78	93	95	96	113	84	77	95	91
20:00	53	49	74	55	75	74	55	61	62
21:00	32	40	52	53	54	49	50	46	47
22:00	23	33	32	27	46	44	36	32	34
23:00	20	20	28	28	27	39	19	25	26
Total	2567	2659	2760	2713	2855	1712	1411	2711	2382
7-19	2248	2323	2377	2361	2437	1330	1098	2349	2025
6-22	2467	2559	2647	2611	2735	1564	1292	2604	2268
6-24	2510	2612	2707	2666	2808	1647	1347	2661	2328
0-24	2567	2659	2760	2713	2855	1712	1411	2711	2382

Job No	AUNSW3220	
Client	Bitzios	
Site	Brush Road	
Location	between Sindel Street and Eulalia Street	
Site No	1	
Start Date	9-Mar-22	
Description	Volume Summary	
Direction	Combined	

Hour Starting	Day of Week							W'Day Ave 866	7 Day Ave 775
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	14-Mar	15-Mar	9-Mar	10-Mar	11-Mar	12-Mar	13-Mar		
AM Peak	114	147	110	132	116	43	39		
PM Peak	87	80	104	88	99	53	50		
0:00	5	4	4	2	2	7	7	3	4
1:00	3	4	2	2	4	1	4	3	3
2:00	1	0	2	2	2	6	3	1	2
3:00	4	2	2	2	2	3	1	2	2
4:00	7	6	2	7	6	1	2	6	4
5:00	7	6	12	7	8	5	1	8	7
6:00	18	25	19	17	21	13	9	20	17
7:00	59	62	55	55	44	9	10	55	42
8:00	114	147	110	132	116	27	19	124	95
9:00	64	76	69	64	50	37	39	65	57
10:00	33	27	41	37	45	43	30	37	37
11:00	32	33	28	34	42	39	37	34	35
12:00	32	45	30	43	30	53	50	36	40
13:00	33	40	29	33	32	41	49	33	37
14:00	61	47	44	58	62	42	32	54	49
15:00	87	80	104	88	99	45	27	92	76
16:00	46	68	89	71	64	36	39	68	59
17:00	67	63	71	75	81	45	34	71	62
18:00	38	54	48	45	53	38	23	48	43
19:00	39	36	33	30	40	27	37	36	35
20:00	25	26	36	22	24	19	29	27	26
21:00	16	24	14	21	20	11	20	19	18
22:00	9	16	20	13	19	20	10	15	15
23:00	6	8	13	10	11	9	10	10	10
Total	806	899	877	870	877	577	522	866	775
7-19	666	742	718	735	718	455	389	716	632
6-22	764	853	820	825	823	525	484	817	728
6-24	779	877	853	848	853	554	504	842	753
0-24	806	899	877	870	877	577	522	866	775

Appendix C: Forecast 2024 \& 2034 Traffic Volumes

Appendix D: Development Traffic Distribution and Volumes

Appendix E: Design Case Traffic Volumes

Appendix F: SIDRA Modelling Outputs

MOVEMENT SUMMARY

目 Site: 0192 [BG2024_Victoria Road / Marsden Road_PM Peak (Site Folder: BG2024_Weekday_PM)]

Network: N101
[BG2024_Weekday_PM (Network Folder: General)]

BG2024

Victoria Road / Marsden Road
PM Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	$\begin{aligned} & \text { EBACK } \\ & \text { EUE } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	$\begin{aligned} & \text { EffectiveAv } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	183	0.6	183	0.6	0.748	37.1	LOS C	5.8	40.5	1.00	0.87	1.09	33.8
2 T1	224	0.0	224	0.0	* 1.337	294.3	LOS F	32.3	226.2	1.00	1.92	2.70	5.5
3 R2	131	0.0	131	0.0	1.337	365.9	LOS F	32.3	226.2	1.00	2.19	3.12	8.3
Approach	538	0.2	538	0.2	1.337	224.1	LOS F	32.3	226.2	1.00	1.63	2.25	9.8
East: Victoria Road													
4 L2	52	2.0	52	2.0	0.092	29.2	LOS C	1.4	11.0	0.64	0.69	0.64	39.7
5 T1	2048	4.1	2048	4.1	1.370	385.2	LOS F	120.3	868.1	1.00	2.61	3.14	7.5
6 R2	363	0.3	363	0.3	* 1.349	378.9	LOS F	19.3	135.2	1.00	1.66	3.21	4.4
Approach	2463	3.5	2463	3.5	1.370	376.8	LOS F	120.3	868.1	0.99	2.43	3.10	7.1
North: Marsden Road													
7 L2	353	0.3	353	0.3	0.674	47.2	LOS D	11.4	80.1	0.94	0.85	0.94	27.1
8 T1	109	1.0	109	1.0	0.368	51.7	LOS D	3.6	25.7	0.94	0.76	0.94	23.5
9 R2	174	1.8	174	1.8	* 0.618	58.6	LOS E	6.1	43.1	0.99	0.81	0.99	20.4
Approach	636	0.8	636	0.8	0.674	51.1	LOS D	11.4	80.1	0.95	0.82	0.95	24.6
West: Victoria Road													
10 L2	100	2.1	100	2.1	0.140	30.3	LOS C	2.2	15.8	0.65	0.73	0.65	28.8
11 T1	2154	2.1	2154	2.1	* 1.395	406.7	LOS F	127.5	904.4	1.00	2.69	3.23	7.2
12 R 2	89	2.4	89	2.4	0.675	70.2	LOS E	3.4	24.4	1.00	0.82	1.11	25.5
Approach	2343	2.1	2343	2.1	1.395	377.8	LOS F	127.5	904.4	0.98	2.54	3.04	7.3
All Vehicles	5980	2.4	5980	2.4	1.395	328.8	LOS F	127.5	904.4	0.98	2.23	2.77	7.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [Ped } \\ \text { ped } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:23:17 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [BG2024_Winbourne Street / Marsden Road_PM Peak (Site Folder: BG2024_Weekday_PM)]

BG2024
Winbourne Street / Marsden Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID		DEM FLO [Total veh/h	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road														
2		563	0.4	449	0.4	0.118	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a	R1	100	2.1	80	2.5	0.093	6.8	LOS A	0.1	0.9	0.42	0.64	0.42	44.3
Appr	ach	663	0.6	$529{ }^{\text {N1 }}$	0.7	0.118	1.0	NA	0.1	0.9	0.06	0.10	0.06	56.9
NorthEast: Winbourne Street														
24a		162	1.3	162	1.3	0.230	4.3	LOS A	0.2	1.6	0.29	0.51	0.29	44.4
26b		25	4.2	25	4.2	0.103	18.5	LOS B	0.1	1.0	0.75	0.90	0.75	41.7
Approach		187	1.7	187	1.7	0.230	6.2	LOS A	0.2	1.6	0.35	0.56	0.35	43.7
North: Marsden Road														
7b		9	0.0	9	0.0	0.153	6.6	LOS A	0.0	0.0	0.00	0.03	0.00	58.4
8		468	1.1	468	1.1	0.153	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.7
Appr	ach	478	1.1	478	1.1	0.153	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
All Ve	hicles	1328	1.0	1195^{N}		0.230	1.5	NA	0.2	1.6	0.08	0.14	0.08	55.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

MOVEMENT SUMMARY

∇ Site: 101 [BG2024_Brush Road / Victoria Road_PM Peak (Site
Folder: BG2024_Weekday_PM)]

BG2024

Brush Road / Victoria Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	INPUT VOLUMES [Total HV] veh/h veh/h		DEMANDFLOWS$\left[\begin{array}{cc}\text { Total } & \text { HV] } \\ \text { veh/h } & \%\end{array}\right.$		Deg. Satn \qquad v/c	Aver. Level of Delay Servicesec		$\begin{array}{cc} \text { 95\% BACK OF } \\ \text { QUEUE } \\ \text { [Veh. Dist] } \\ \text { veh } & \text { m } \end{array}$		Prop. Effective Que Stop Rate		Aver. Aver. No. Speed Cycles km/h	
East: Victoria Road													
$5 \quad$ T1	2385	65	2511	2.7	0.661	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	69.1
Approach	2385	65	2511	2.7	0.661	0.3	NA	0.0	0.0	0.00	0.00	0.00	69.1
North: Brush Road													
7 L2	18	1	19	5.6	0.015	4.7	LOS A	0.1	0.4	0.06	0.51	0.06	50.8
Approach	18	1	19	5.6	0.015	4.7	LOS A	0.1	0.4	0.06	0.51	0.06	50.8
West: Victoria Road													
10 L 2	48	0	51	0.0	0.037	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	59.4
11 T1	2489	44	2620	1.8	0.686	0.4	LOS A	0.0	0.0	0.00	0.00	0.00	69.0
Approach	2537	44	2671	1.7	0.686	0.5	NA	0.0	0.0	0.00	0.01	0.00	68.7
All Vehicles	4940	110	5200	2.2	0.686	0.4	NA	0.1	0.4	0.00	0.01	0.00	68.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:54:35 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目Site: 0192 [BG2024_Victoria Road / Marsden Road_SAT Peak (Site Folder: BG2024_SAT)]

마 Network: N101
[BG2024_SAT (Network Folder:
General)]

BG2034

Victoria Road / Marsden Road
Saturday Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	$\begin{gathered} \text { E BACK } \\ \text { EUE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	198	5.3	198	5.3	0.647	32.7	LOS C	5.1	37.4	0.97	0.81	0.97	34.8
2 T1	142	0.0	142	0.0	* 1.157	179.0	LOS F	21.8	153.8	1.00	1.58	2.14	8.3
3 R2	164	1.3	164	1.3	1.157	215.3	LOS F	21.8	153.8	1.00	1.74	2.39	12.9
Approach	504	2.5	504	2.5	1.157	133.4	LOS F	21.8	153.8	0.99	1.33	1.76	15.5
East: Victoria Road													
4 L2	46	0.0	46	0.0	0.087	30.4	LOS C	1.3	10.3	0.65	0.68	0.65	39.2
5 T1	1709	3.6	1709	3.6	* 1.190	230.7	LOS F	77.3	555.2	1.00	2.00	2.40	11.6
6 R2	342	0.3	342	0.3	* 1.144	207.2	LOS F	12.8	89.7	1.00	1.34	2.39	7.7
Approach	2098	3.0	2098	3.0	1.190	222.5	LOS F	77.3	555.2	0.99	1.87	2.36	11.1
North: Marsden Road													
7 L2	364	1.7	364	1.7	0.683	46.6	LOS D	11.8	83.6	0.94	0.85	0.94	27.2
8 T1	109	1.0	109	1.0	0.368	51.7	LOS D	3.6	25.7	0.94	0.76	0.94	23.5
9 R2	148	0.7	148	0.7	* 0.524	57.7	LOSE	5.1	35.8	0.97	0.80	0.97	20.7
Approach	622	1.4	622	1.4	0.683	50.2	LOS D	11.8	83.6	0.95	0.82	0.95	24.9
West: Victoria Road													
10 L2	107	2.0	107	2.0	0.157	31.7	LOS C	2.5	17.5	0.67	0.74	0.67	28.0
11 T1	1671	4.3	1671	4.3	1.178	221.4	LOS F	74.6	539.0	1.00	1.96	2.35	12.0
12 R 2	142	6.7	142	6.7	0.993	106.0	LOS F	7.1	52.5	1.00	1.10	1.78	19.9
Approach	1920	4.3	1920	4.3	1.178	202.2	LOS F	74.6	539.0	0.98	1.83	2.21	12.4
All Vehicles	5144	3.2	5144	3.2	1.190	185.4	LOS F	77.3	555.2	0.98	1.67	2.07	12.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [Ped } \\ \text { ped } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:23:20 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [BG2024_Winbourne Street / Marsden Road_SAT
Peak (Site Folder: BG2024_SAT)]
마 Network: N101
[BG2024_SAT (Network Folder:
General)]

BG2024

Winbourne Street / Marsden Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Total veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road													
$2 \quad \mathrm{~T} 1$	505	0.2	455	0.2	0.120	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a R1	58	1.8	52	1.9	0.064	7.0	LOS A	0.1	0.6	0.45	0.65	0.45	44.1
Approach	563	0.4	$507{ }^{\text {N1 }}$	0.4	0.120	0.7	NA	0.1	0.6	0.05	0.07	0.05	57.8
NorthEast: Winbourne Street													
24a L1	112	0.9	112	0.9	0.171	4.3	LOS A	0.2	1.1	0.29	0.51	0.29	44.4
26b R3	18	0.0	18	0.0	0.075	18.7	LOS B	0.1	0.7	0.76	0.90	0.76	41.6
Approach	129	0.8	129	0.8	0.171	6.3	LOS A	0.2	1.1	0.35	0.56	0.35	43.7
North: Marsden Road													
7b L3	9	0.0	9	0.0	0.174	6.6	LOS A	0.0	0.0	0.00	0.03	0.00	58.4
8 T1	520	1.2	520	1.2	0.174	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.7
Approach	529	1.2	529	1.2	0.174	0.2	NA	0.0	0.0	0.00	0.01	0.00	59.6
All Vehicles	1222	0.8	1166^{N}	0.8	0.174	1.1	NA	0.2	1.1	0.06	0.10	0.06	56.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

MOVEMENT SUMMARY

∇ Site: 101 [BG2024_Brush Road / Victoria Road_SAT Peak
(Site Folder: BG2024_SAT)]

BG2024

Brush Road / Victoria Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	INPUT VOLUMES [Total HV] veh/h veh/h		DEMANDFLOWS$\left[\begin{array}{cc}\text { Total } & \text { HV] } \\ \text { veh/h } & \%\end{array}\right.$		Deg. Satn v/c	Aver. Level of Delay Servicesec		$\begin{array}{cc} \text { 95\% BACK OF } \\ \text { QUEUE } \\ \text { [Veh. Dist] } \\ \text { veh } & \text { m } \end{array}$		Prop. Effective Que Stop Rate		Aver. Aver. No. Speed Cycles km/h	
East: Victoria Road													
$5 \quad$ T1	1994	56	2099	2.8	0.552	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	69.4
Approach	1994	56	2099	2.8	0.552	0.2	NA	0.0	0.0	0.00	0.00	0.00	69.4
North: Brush Road													
7 L2	15	0	16	0.0	0.012	4.6	LOS A	0.0	0.3	0.06	0.51	0.06	52.0
Approach	15	0	16	0.0	0.012	4.6	LOS A	0.0	0.3	0.06	0.51	0.06	52.0
West: Victoria Road													
10 L 2	39	1	41	2.6	0.032	6.2	LOS A	0.0	0.0	0.00	0.51	0.00	59.3
11 T1	2066	43	2175	2.1	0.570	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	69.3
Approach	2105	44	2216	2.1	0.570	0.3	NA	0.0	0.0	0.00	0.01	0.00	69.1
All Vehicles	4114	100	4331	2.4	0.570	0.3	NA	0.0	0.3	0.00	0.01	0.00	69.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:54:40 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目 Site: 0192 [BG2034_Victoria Road / Marsden Road_PM Peak (Site Folder: BG2034_Weekday_PM)]

Network: N101
[BG2034_Weekday_PM (Network Folder: General)]

BG2034

Victoria Road / Marsden Road
PM Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
Mov Turn ID		$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	E BACK JEUE Dist] m	Prop. Que	Effective Av Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	339	0.9	339	0.9	1.064	123.4	LOS F	21.0	147.7	1.00	1.30	1.90	15.6
2 T1	414	0.0	414	0.0	* 1.901	734.2	LOS F	93.3	653.0	1.00	3.05	4.18	2.4
3 R2	241	0.0	241	0.0	1.901	860.9	LOS F	93.3	653.0	1.00	3.40	4.63	3.9
Approach	994	0.3	994	0.3	1.901	556.6	LOS F	93.3	653.0	1.00	2.54	3.51	4.4
East: Victoria Road													
4 L2	69	3.0	69	3.0	0.127	32.2	LOS C	1.9	14.8	0.68	0.71	0.68	38.4
$5 \quad \mathrm{~T} 1$	2760	3.6	2760	3.6	* 1.996	941.6	LOS F	241.9	1740.1	1.00	3.84	4.76	3.4
6 R2	493	0.4	493	0.4	* 2.061	1002.3	LOS F	41.7	292.9	1.00	2.28	4.95	1.8
Approach	3322	3.1	3322	3.1	2.061	931.6	LOS F	241.9	1740.1	0.99	3.54	4.71	3.1
North: Marsden Road													
7 L2	484	0.4	484	0.4	0.953	80.3	LOS F	13.1	92.0	1.00	1.06	1.39	19.3
8 T1	151	1.4	151	1.4	0.508	53.1	LOS D	5.1	36.4	0.97	0.79	0.97	23.2
9 R2	240	2.2	240	2.2	* 0.856	68.7	LOS E	9.6	68.3	1.00	0.95	1.25	18.3
Approach	875	1.1	875	1.1	0.953	72.4	LOS F	13.1	92.0	0.99	0.98	1.28	19.6
West: Victoria Road													
10 L2	117	1.8	117	1.8	0.179	33.4	LOS C	2.8	19.7	0.69	0.74	0.69	27.1
11 T1	2511	2.0	2511	2.0	1.765	734.2	LOS F	195.2	1385.3	1.00	3.48	4.29	4.2
12 R 2	104	2.0	104	2.0	0.882	79.2	LOS F	4.3	30.9	1.00	0.95	1.45	23.8
Approach	2732	2.0	2732	2.0	1.765	679.3	LOS F	195.2	1385.3	0.99	3.27	4.03	4.3
All Vehicles	7922	2.2	7922	2.2	2.061	702.7	LOS F	241.9	1740.1	0.99	3.04	3.95	3.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [Ped } \\ \text { ped } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:18:58 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [BG2034_Winbourne Street / Marsden Road_PM Peak (Site Folder: BG2034_Weekday_PM)]

BG2034
Winbourne Street / Marsden Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:18:58 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [BG2034_Brush Road / Victoria Road_PM Peak (Site
Folder: BG2034_Weekday_PM)]

BG2034

Brush Road / Victoria Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	JT MES HV] veh/h		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF JE Dist] m	Prop. Que	Effective Stop Rate		Aver. Speed km/h
East: Victoria Road													
$5 \quad$ T1	3201	73	3369	2.3	0.886	1.3	LOS A	0.0	0.0	0.00	0.00	0.00	66.6
Approach	3201	73	3369	2.3	0.886	1.3	NA	0.0	0.0	0.00	0.00	0.00	66.6
North: Brush Road													
7 L2	18	1	19	5.6	0.015	4.7	LOS A	0.1	0.4	0.06	0.51	0.06	50.8
Approach	18	1	19	5.6	0.015	4.7	LOS A	0.1	0.4	0.06	0.51	0.06	50.8
West: Victoria Road													
10 L2	52	0	55	0.0	0.039	6.2	LOS A	0.0	0.0	0.00	0.54	0.00	59.4
11 T1	3028	47	3187	1.6	0.834	0.9	LOS A	0.0	0.0	0.00	0.00	0.00	67.7
Approach	3080	47	3242	1.5	0.834	1.0	NA	0.0	0.0	0.00	0.01	0.00	67.6
All Vehicles	6299	121	6631	1.9	0.886	1.2	NA	0.1	0.4	0.00	0.01	0.00	67.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:54:46 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目 Site: 0192 [BG2034_Victoria Road / Marsden Road_SAT Peak (Site Folder: BG2034_SAT)]

마 Network: N101
[BG2034_SAT (Network Folder:
General)]

BG 2034

Victoria Road / Marsden Road
Saturday Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=111$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Total veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	$\begin{gathered} \text { EBACK } \\ \text { Dist] } \\ \text { m } \\ \hline \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	399	5.3	399	5.3	0.986	77.3	LOS F	16.7	121.8	1.00	1.19	1.59	23.5
2 T1	286	0.0	286	0.0	* 1.762	674.5	LOS F	86.0	604.8	1.00	3.11	4.40	2.6
3 R2	328	1.0	328	1.0	1.762	734.3	LOS F	86.0	604.8	1.00	3.29	4.66	4.5
Approach	1014	2.4	1014	2.4	1.762	458.8	LOS F	86.0	604.8	1.00	2.41	3.38	5.7
East: Victoria Road													
4 L2	61	0.0	61	0.0	0.127	33.2	LOS C	1.6	12.8	0.72	0.72	0.72	38.0
$5 \quad$ T1	2227	3.4	2227	3.4	* 1.801	763.0	LOS F	174.2	1250.4	1.00	3.55	4.71	4.1
6 R2	446	0.2	446	0.2	* 1.939	890.8	LOS F	35.3	247.7	1.00	2.24	5.10	2.0
Approach	2735	2.8	2735	2.8	1.939	767.6	LOS F	174.2	1250.4	0.99	3.27	4.68	3.6
North: Marsden Road													
7 L2	489	1.7	489	1.7	0.940	71.0	LOS F	13.0	92.0	1.00	1.06	1.38	20.9
8 T1	147	1.4	147	1.4	0.478	47.7	LOS D	4.5	32.2	0.96	0.78	0.96	24.5
9 R2	200	1.1	200	1.1	* 0.680	54.8	LOS D	6.5	45.9	0.99	0.84	1.04	21.4
Approach	837	1.5	837	1.5	0.940	63.0	LOS E	13.0	92.0	0.99	0.96	1.22	21.6
West: Victoria Road													
10 L2	125	0.8	125	0.8	0.214	34.6	LOS C	2.9	20.6	0.75	0.76	0.75	26.5
11 T1	1927	2.3	1927	2.3	1.566	553.7	LOS F	131.8	936.6	1.00	3.07	4.06	5.5
12 R 2	162	3.2	162	3.2	1.439	451.7	LOS F	18.5	133.0	1.00	1.77	3.77	6.1
Approach	2215	2.3	2215	2.3	1.566	516.9	LOS F	131.8	936.6	0.98	2.84	3.85	5.5
All Vehicles	6800	2.4	6800	2.4	1.939	553.2	LOS F	174.2	1250.4	0.99	2.72	3.79	4.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov ID Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAC [Ped ped	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Travel Dist. \qquad m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	49.7	LOS E	0.0	0.0	0.95	0.95	214.9	214.8	1.00
East: Victoria Road										
P2 Full	46	49.8	LOS E	0.1	0.1	0.95	0.95	224.4	227.0	1.01
North: Marsden Road										

P3 Full	16	49.7	LOS E	0.0	0.0	0.95	0.95	217.0	217.5	1.00
P3B Slip/ Bypass	16	49.7	LOS E	0.0	0.0	0.95	0.95	206.6	204.0	0.99
West: Victoria Road										
P4B Slip/ Bypass	16	49.7	LOS E	0.0	0.0	0.95	0.95	206.6	204.0	0.99
All Pedestrians	108	49.7	LOS E	0.1	0.1	0.95	0.95	216.8	217.3	1.00

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, 14 September 2022 9:48:20 AM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [BG2034_Winbourne Street / Marsden Road_WKND
마 Network: N101
Peak (Site Folder: BG2034_SAT)]
[BG2034_SAT (Network Folder:
General)]
BG2034
Winbourne Street / Marsden Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance												
Mov Turn ID		$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	ARRIVAL FLOWS [Total HV] veh/h \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road												
2 T1	707	0.3	4360.4	0.114	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a R1	75	1.4	$46 \quad 1.9$	0.070	8.3	LOS A	0.1	0.6	0.55	0.73	0.55	43.0
Approach	782	0.4	$482{ }^{\text {N1 }} 0.5$	0.114	0.8	NA	0.1	0.6	0.05	0.07	0.05	57.7
NorthEast: Winbourne Street												
24a L1	142	0.7	1420.7	0.301	5.2	LOS A	2.3	16.1	0.41	0.62	0.42	43.8
26b R3	22	0.0	220.0	0.121	23.9	LOS B	0.2	1.1	0.83	0.93	0.83	39.3
Approach	164	0.6	1640.6	0.301	7.7	LOS A	2.3	16.1	0.47	0.66	0.47	42.7
North: Marsden Road												
7b L3	11	0.0	110.0	0.183	6.6	LOS A	5.4	38.3	0.00	0.02	0.00	58.5
8 T1	685	1.4	6851.4	0.183	0.0	LOS A	5.4	38.3	0.00	0.01	0.00	59.7
Approach	696	1.4	6961.4	0.183	0.1	NA	5.4	38.3	0.00	0.01	0.00	59.7
All Vehicles	1642	0.8	$1342^{\mathrm{N}} 1.0$	0.301	1.3	NA	5.4	38.3	0.08	0.11	0.08	56.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

MOVEMENT SUMMARY

V Site: 101 [BG2034_Brush Road / Victoria Road_SAT Peak
(Site Folder: BG2034_SAT)]

BG2034

Brush Road / Victoria Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	INP VOLU [Total veh/h	UT MES HV] veh/h	$\begin{gathered} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \mathrm{HV} \text {] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{gathered} 95 \% \mathrm{E} \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h \qquad
East: Victoria Road													
$5 \quad$ T1	2604	75	2741	2.9	0.723	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	68.8
Approach	2604	75	2741	2.9	0.723	0.5	NA	0.0	0.0	0.00	0.00	0.00	68.8
North: Brush Road													
7 L2	15	0	16	0.0	0.012	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	52.2
Approach	15	0	16	0.0	0.012	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	52.2
West: Victoria Road													
10 L2	45	1	47	2.2	0.026	6.4	LOS A	0.0	0.0	0.00	0.61	0.00	59.1
11 T1	2613	44	2751	1.7	0.724	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	68.8
Approach	2658	45	2798	1.7	0.724	0.6	NA	0.0	0.0	0.00	0.01	0.00	68.6
All Vehicles	5277	120	5555	2.3	0.724	0.5	NA	0.0	0.0	0.00	0.01	0.00	68.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:54:52 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目 Site: 0192 [DES2024_Victoria Road / Marsden Road_PM Peak (Site Folder: DES2024_Weekday_PM)]

마 Network: N101
[DES2024_Weekday_PM (Network Folder: General)]

DES2024

Victoria Road / Marsden Road
PM Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov ID Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERAG Q [Ped ped	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Travel Dist. m	Aver. Speed m/sec
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:19:02 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2024_Winbourne Street / Marsden Road_PM
Peak (Site Folder: DES2024_Weekday_PM)]

마 Network: N101
[DES2024_Weekday_PM (Network Folder: General)]

DES2024

Winbourne Street / Marsden Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID		$\begin{gathered} \text { DEMA } \\ \text { FLOI } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road														
2		563	0.4	424	0.5	0.111	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a	R1	100	2.1	76	2.6	0.087	6.7	LOS A	0.1	0.8	0.41	0.63	0.41	44.3
Appr	ach	663	0.6	$499{ }^{\text {N1 }}$	0.8	0.111	1.0	NA	0.1	0.8	0.06	0.10	0.06	56.9
NorthEast: Winbourne Street														
24a		162	1.3	162	1.3	0.305	4.6	LOS A	0.6	4.0	0.34	0.55	0.34	44.2
26b		25	4.2	25	4.2	0.097	17.6	LOS B	0.1	0.9	0.74	0.89	0.74	42.1
Approach		187	1.7	187	1.7	0.305	6.3	LOS A	0.6	4.0	0.39	0.60	0.39	43.7
North: Marsden Road														
7b		9	0.0	9	0.0	0.126	6.6	LOS A	0.8	5.6	0.00	0.03	0.00	58.5
8		468	1.1	468	1.1	0.126	0.0	LOS A	0.8	5.6	0.00	0.01	0.00	59.7
Appr	ach	478	1.1	478	1.1	0.126	0.2	NA	0.8	5.6	0.00	0.01	0.00	59.6
All Ve	hicles	1328	1.0	1165^{N}		0.305	1.5	NA	0.8	5.6	0.09	0.14	0.09	55.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:19:02 PM
Project: P:IP5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2024_Brush Road / Victoria Road_PM Peak
(Site Folder: DES2024_Weekday_PM)]

DES2024

Brush Road / Victoria Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		MES HV] veh/h		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad	Level of Service	$\begin{gathered} 95 \% \text { B } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	CK OF Dist $]$ m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Victoria Road													
5 T1	2422	65	2549	2.7	0.671	0.4	LOS A	0.0	0.0	0.00	0.00	0.00	69.0
Approach	2422	65	2549	2.7	0.671	0.4	NA	0.0	0.0	0.00	0.00	0.00	69.0
North: Brush Road													
7 L2	76	1	80	1.3	0.061	4.6	LOS A	0.2	1.6	0.06	0.51	0.06	51.7
Approach	76	1	80	1.3	0.061	4.6	LOS A	0.2	1.6	0.06	0.51	0.06	51.7
West: Victoria Road													
10 L2	82	0	86	0.0	0.056	6.3	LOS A	0.0	0.0	0.00	0.56	0.00	59.5
11 T1	2545	44	2679	1.7	0.701	0.4	LOS A	0.0	0.0	0.00	0.00	0.00	68.9
Approach	2627	44	2765	1.7	0.701	0.6	NA	0.0	0.0	0.00	0.02	0.00	68.5
All Vehicles	5125	110	5395	2.1	0.701	0.5	NA	0.2	1.6	0.00	0.02	0.00	68.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:54:57 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目 Site: 0192 [DES2024_Victoria Road / Marsden Road_SAT Peak (Site Folder: DES2024_SAT)]

마 Network: N101
[DES2024_SAT (Network
Folder: General)]

DES2024

Victoria Road / Marsden Road
Saturday Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { HV] } \\ & \hline \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	$\begin{aligned} & \text { EBACK } \\ & \text { EUE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	198	5.3	198	5.3	0.642	32.1	LOS C	5.1	37.4	0.97	0.82	0.97	35.1
2 T1	162	0.0	162	0.0	* 1.148	172.1	LOS F	22.6	159.4	0.99	1.56	2.09	8.6
3 R2	164	1.3	164	1.3	1.148	208.0	LOS F	22.6	159.4	1.00	1.73	2.34	13.2
Approach	524	2.4	524	2.4	1.148	130.5	LOS F	22.6	159.4	0.99	1.33	1.74	15.6
East: Victoria Road													
4 L2	46	0.0	46	0.0	0.089	31.0	LOS C	1.3	10.4	0.66	0.69	0.66	38.9
5 T1	1709	3.6	1709	3.6	* 1.220	256.3	LOS F	81.9	588.0	1.00	2.10	2.54	10.6
6 R2	378	0.3	378	0.3	* 1.263	305.9	LOS F	17.8	124.6	1.00	1.53	2.88	5.4
Approach	2134	2.9	2134	2.9	1.263	260.2	LOS F	81.9	588.0	0.99	1.97	2.56	9.7
North: Marsden Road													
7 L2	418	1.5	418	1.5	0.783	50.6	LOS D	13.0	92.0	0.98	0.89	1.04	25.9
8 T1	125	0.8	125	0.8	0.421	52.2	LOS D	4.2	29.6	0.95	0.77	0.95	23.4
9 R2	175	0.6	175	0.6	* 0.616	58.6	LOS E	6.1	42.9	0.99	0.81	0.99	20.5
Approach	718	1.2	718	1.2	0.783	52.8	LOS D	13.0	92.0	0.98	0.85	1.01	24.1
West: Victoria Road													
10 L2	117	0.9	117	0.9	0.174	32.5	LOS C	2.7	19.2	0.68	0.74	0.68	27.5
11 T1	1671	2.3	1671	2.3	1.184	225.9	LOS F	75.0	533.0	1.00	1.97	2.37	11.8
12 R 2	137	3.1	137	3.1	0.933	85.5	LOS F	6.0	43.3	1.00	1.01	1.56	22.7
Approach	1924	2.3	1924	2.3	1.184	204.2	LOS F	75.0	533.0	0.98	1.83	2.21	12.3
All Vehicles	5300	2.4	5300	2.4	1.263	198.9	LOS F	81.9	588.0	0.98	1.70	2.14	11.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Dem. Flow ped/h	Aver. Delay sec	Level of Service	AVERA [Ped ped	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, 14 September 2022 9:37:20 AM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2024_Brush Road / Victoria Road_SAT Peak
(Site Folder: DES2024_SAT)]

DES2024

Brush Road / Victoria Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Mov Turn ID	$\begin{aligned} & \text { IN } \\ & \text { VOL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	JT MES HV] veh/h		$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q [Veh veh	CK OF JE Dist] m	Prop. Que	Effective Stop Rate		Aver. Speed km/h
East: Victoria Road													
5 T1	2031	60	2138	3.0	0.563	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	69.4
Approach	2031	60	2138	3.0	0.563	0.2	NA	0.0	0.0	0.00	0.00	0.00	69.4
North: Brush Road													
7 L2	68	0	72	0.0	0.054	4.6	LOS A	0.2	1.4	0.06	0.51	0.06	52.0
Approach	68	0	72	0.0	0.054	4.6	LOS A	0.2	1.4	0.06	0.51	0.06	52.0
West: Victoria Road													
10 L 2	70	1	74	1.4	0.050	6.3	LOS A	0.0	0.0	0.00	0.55	0.00	59.5
11 T1	2119	45	2231	2.1	0.584	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	69.3
Approach	2189	46	2304	2.1	0.584	0.4	NA	0.0	0.0	0.00	0.02	0.00	68.9
All Vehicles	4288	106	4514	2.5	0.584	0.4	NA	0.2	1.4	0.00	0.02	0.00	68.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Wednesday, 14 September 2022 9:36:30 AM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2024_Winbourne Street / Marsden Road_SAT
Peak (Site Folder: DES2024_SAT)]

DES2024

Winbourne Street / Marsden Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance												
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRIVAL FLOWS [Total HV] veh/h \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road												
2 T1	505	0.2	4310.2	0.113	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a R1	124	0.8	1060.9	0.140	7.6	LOS A	0.2	1.3	0.51	0.72	0.51	43.6
Approach	629	0.3	$538{ }^{\text {N1 } 1} 0.4$	0.140	1.5	NA	0.2	1.3	0.10	0.14	0.10	55.8
NorthEast: Winbourne Street												
24a L1	208	0.5	2080.5	0.386	4.6	LOS A	0.8	5.5	0.34	0.55	0.34	44.2
26b R3	33	0.0	330.0	0.149	20.8	LOS B	0.2	1.4	0.80	0.92	0.80	40.7
Approach	241	0.4	2410.4	0.386	6.8	LOS A	0.8	5.5	0.40	0.60	0.40	43.3
North: Marsden Road												
7b L3	75	0.0	750.0	0.160	6.7	LOS A	0.8	5.8	0.00	0.17	0.00	57.2
8 T1	521	1.4	5211.4	0.160	0.0	LOS A	0.8	5.8	0.00	0.07	0.00	58.6
Approach	596	1.2	5961.2	0.160	0.9	NA	0.8	5.8	0.00	0.08	0.00	58.3
All Vehicles	1466	0.7	$1374^{\mathrm{N}} 0.8$	0.386	2.2	NA	0.8	5.8	0.11	0.20	0.11	54.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

MOVEMENT SUMMARY

目 Site: 0192 [DES2034_Victoria Road / Marsden Road_PM Peak (Site Folder: DES2034_Weekday_PM)]

마 Network: N101
[DES2034_Weekday_PM (Network Folder: General)]

DES2034

Victoria Road / Marsden Road
PM Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
Mov Turn ID		$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	ARR FLO [Total veh/h	$\begin{gathered} \text { IVAL } \\ \text { WS } \\ \text { IHV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	E BACK JEUE Dist] m	Prop. Que	Effective Av Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
1 L2	339	0.9	339	0.9	1.085	139.0	LOS F	22.9	161.5	1.00	1.35	2.00	14.5
2 T1	435	0.0	435	0.0	* 1.939	755.0	LOS F	96.7	676.9	1.00	3.08	4.22	2.3
3 R2	241	0.0	241	0.0	1.939	894.5	LOS F	96.7	676.9	1.00	3.46	4.70	3.8
Approach	1015	0.3	1015	0.3	1.939	582.4	LOS F	96.7	676.9	1.00	2.59	3.59	4.2
East: Victoria Road													
4 L2	69	3.0	69	3.0	0.129	32.9	LOS C	1.9	15.0	0.69	0.72	0.69	38.2
$5 \quad \mathrm{~T} 1$	2760	3.6	2760	3.6	* 2.045	985.4	LOS F	246.7	1774.8	1.00	3.87	4.85	3.2
6 R2	532	0.4	532	0.4	* 1.976	927.6	LOS F	43.6	306.2	1.00	2.28	4.80	1.9
Approach	3361	3.1	3361	3.1	2.045	956.6	LOS F	246.7	1774.8	0.99	3.56	4.76	3.0
North: Marsden Road													
7 L2	543	0.4	543	0.4	1.038	124.7	LOS F	13.1	92.0	1.00	1.23	1.73	13.8
8 T1	168	1.3	168	1.3	0.568	53.6	LOS D	5.8	41.1	0.98	0.80	0.98	23.0
9 R2	268	2.0	268	2.0	* 0.956	87.9	LOS F	12.5	89.2	1.00	1.08	1.52	15.3
Approach	980	1.0	980	1.0	1.038	102.4	LOS F	13.1	92.0	1.00	1.11	1.54	15.2
West: Victoria Road													
10 L2	128	1.6	128	1.6	0.201	34.3	LOS C	3.1	22.0	0.71	0.75	0.71	26.7
11 T1	2547	2.0	2547	2.0	1.828	790.8	LOS F	204.2	1448.6	1.00	3.57	4.43	3.9
12 R 2	104	2.0	104	2.0	0.784	72.9	LOS F	4.1	29.2	1.00	0.87	1.24	25.0
Approach	2780	2.0	2780	2.0	1.828	729.0	LOS F	204.2	1448.6	0.99	3.34	4.14	4.0
All Vehicles	8136	2.1	8136	2.1	2.045	729.2	LOS F	246.7	1774.8	0.99	3.07	4.01	3.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [Ped } \\ \text { ped } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:19:07 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2034_Winbourne Street / Marsden Road_PM
Peak (Site Folder: DES2034_Weekday_PM)]

Network: N101
[DES2034_Weekday_PM (Network Folder: General)]

DES2034
Winbourne Street / Marsden Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	ND VS HV] \%	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	Effective Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road													
2 T1	566	0.4	338	0.5	0.089	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3a R1	160	1.3	96	1.7	0.122	7.4	LOS A	0.2	1.1	0.48	0.69	0.48	43.8
Approach	726	0.6	$434{ }^{\text {N1 }}$	0.7	0.122	1.6	NA	0.2	1.1	0.11	0.15	0.11	55.4
NorthEast: Winbourne Street													
24a L1	252	0.8	252	0.8	0.456	4.8	LOS A	10.9	77.0	0.33	0.55	0.35	44.2
26b R3	39	2.7	39	2.7	0.151	18.1	LOS B	0.2	1.5	0.76	0.90	0.76	41.9
Approach	291	1.1	291	1.1	0.456	6.5	LOS A	10.9	77.0	0.39	0.60	0.41	43.6
North: Marsden Road													
7b L3	80	0.0	80	0.0	0.152	6.7	LOS A	8.4	59.4	0.00	0.20	0.00	57.0
8 T1	484	1.1	484	1.1	0.152	0.0	LOS A	8.4	59.4	0.00	0.08	0.00	58.5
Approach	564	0.9	564	0.9	0.152	1.0	NA	8.4	59.4	0.00	0.10	0.00	58.1
All Vehicles	1581	0.8	1288^{N}	1.0	0.456	2.5	NA	10.9	77.0	0.12	0.23	0.13	53.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:19:07 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2034_Brush Road / Victoria Road_PM Peak
(Site Folder: DES2034_Weekday_PM)]

DES2034

Brush Road / Victoria Road
PM Peak
Site Category: (None)
Give-Way (Two-Way)

Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	JT MES HV] veh/h	DEMAND FLOWS		Deg. Satn v/c	Aver. Level of Delay Service		95\% BACK OF QUEUE	CK OF JE Dist] m	Prop. Que	Effective Stop Rate	Aver. Aver. No. Speed Cycles km/h	
East: Victoria Road													
5 T1	3238	73	3408	2.3	0.896	1.5	LOS A	0.0	0.0	0.00	0.00	0.00	66.2
Approach	3238	73	3408	2.3	0.896	1.5	NA	0.0	0.0	0.00	0.00	0.00	66.2
North: Brush Road													
7 L2	76	1	80	1.3	0.061	4.6	LOS A	0.2	1.6	0.06	0.51	0.06	51.7
Approach	76	1	80	1.3	0.061	4.6	LOS A	0.2	1.6	0.06	0.51	0.06	51.7
West: Victoria Road													
10 L2	86	0	91	0.0	0.059	6.3	LOS A	0.0	0.0	0.00	0.56	0.00	59.5
11 T1	3084	47	3246	1.5	0.849	1.0	LOS A	0.0	0.0	0.00	0.00	0.00	67.5
Approach	3170	47	3337	1.5	0.849	1.1	NA	0.0	0.0	0.00	0.02	0.00	67.2
All Vehicles	6484	121	6825	1.9	0.896	1.3	NA	0.2	1.6	0.00	0.01	0.00	66.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:55:08 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

目 Site: 0192 [DES2034_Victoria Road / Marsden Road_SAT Peak (Site Folder: DES2034_SAT)]

마 Network: N101
[DES2034_SAT (Network
Folder: General)]

DES2034

Victoria Road / Marsden Road
Saturday Peak
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=122$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
Mov Turn ID			ARR FLO [Tota veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh.	E BACK JEUE Dist]	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Wharf Road													
L2	399	5.3	399	5.3	0.960	67.8	LOS E	16.6	121.0	1.00	1.11	1.44	25.2
$2 \quad \mathrm{~T} 1$	306	0.0	306	0.0	* 1.716	625.5	LOS F	87.5	615.6	1.00	2.81	3.93	2.8
3 R2	328	1.0	328	1.0	1.716	697.1	LOS F	87.5	615.6	1.00	3.02	4.22	4.7
Approach	1034	2.3	1034	2.3	1.716	433.0	LOS F	87.5	615.6	1.00	2.22	3.06	5.9
East: Victoria Road													
4 L2	61	0.0	61	0.0	0.123	34.9	LOS C	1.7	13.8	0.71	0.71	0.71	37.4
$5 \quad$ T1	2227	3.4	2227	3.4	* 1.766	735.1	LOS F	177.0	1270.0	1.00	3.37	4.30	4.2
6 R2	482	0.2	482	0.2	* 1.790	763.2	LOS F	36.4	255.2	1.00	2.14	4.44	2.3
Approach	2771	2.8	2771	2.8	1.790	724.6	LOS F	177.0	1270.0	0.99	3.10	4.25	3.8
North: Marsden Road													
7 L2	543	1.6	543	1.6	1.047	130.5	LOS F	13.0	92.0	1.00	1.25	1.77	13.2
8 T1	164	1.3	164	1.3	0.554	53.5	LOS D	5.6	40.0	0.97	0.80	0.97	23.1
9 R2	226	0.9	226	0.9	* 0.800	64.5	LOSE	8.6	60.7	1.00	0.90	1.16	19.2
Approach	934	1.4	934	1.4	1.047	100.9	LOS F	13.0	92.0	1.00	1.08	1.48	15.4
West: Victoria Road													
10 L2	136	0.8	136	0.8	0.226	36.6	LOS C	3.4	24.2	0.74	0.76	0.74	25.6
11 T1	1960	2.3	1960	2.3	1.549	543.0	LOS F	136.4	969.3	1.00	2.94	3.74	5.5
12 R 2	162	3.2	162	3.2	1.230	277.9	LOS F	14.4	103.6	1.00	1.49	2.77	9.3
Approach	2258	2.2	2258	2.2	1.549	493.5	LOS F	136.4	969.3	0.98	2.71	3.49	5.7
All Vehicles	6996	2.3	6996	2.3	1.790	523.7	LOS F	177.0	1270.0	0.99	2.57	3.46	5.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance										
Mov Crossing	Dem. Flow ped/h	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [Ped } \\ \text { ped } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	Effective Stop Rate	Travel Time sec	Trave Dist. m	Aver. Speed $\mathrm{m} / \mathrm{sec}$
South: Wharf Road										
P1 Full	15	55.2	LOS E	0.0	0.0	0.95	0.95	220.4	214.8	0.97
East: Victoria Road										
P2 Full	46	55.3	LOS E	0.2	0.2	0.95	0.95	229.9	227.0	0.99
North: Marsden Road										

P3 Full	16	55.2	LOS E	0.1	0.1	0.95	0.95	222.5	217.5	0.98
P3B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
West: Victoria Road										
P4B Slip/ Bypass	16	55.2	LOS E	0.1	0.1	0.95	0.95	212.1	204.0	0.96
All Pedestrians	108	55.2	LOS E	0.2	0.2	0.95	0.95	222.3	217.3	0.98

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 5:19:09 PM Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

MOVEMENT SUMMARY

∇ Site: 101 [DES2034_Winbourne Street / Marsden Road_SAT
Peak (Site Folder: DES2034_SAT)]
마 Network: N101
[DES2034_SAT (Network Folder: General)]

DES2034

Winbourne Street / Marsden Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance												
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRIVAL FLOWS [Total HV] veh/h \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Marsden Road												
$2 \quad \mathrm{~T} 1$	707	0.3	4570.4	0.121	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3a R1	140	0.8	911.0	0.148	9.1	LOS A	0.2	1.3	0.61	0.81	0.61	42.3
Approach	847	0.4	$548{ }^{\text {N1 }} 0.5$	0.148	1.5	NA	0.2	1.3	0.10	0.13	0.10	56.1
NorthEast: Winbourne Street												
24a L1	239	0.4	2390.4	0.482	6.0	LOS A	9.0	63.5	0.41	0.67	0.51	43.1
26b R3	37	0.0	$37 \quad 0.0$	0.239	30.3	LOS C	0.3	2.2	0.87	0.97	0.95	36.8
Approach	276	0.4	2760.4	0.482	9.2	LOS A	9.0	63.5	0.48	0.71	0.57	41.4
North: Marsden Road												
7b L3	77	0.0	$77 \quad 0.0$	0.204	6.7	LOS A	11.2	79.4	0.00	0.14	0.00	57.5
8 T1	685	1.4	6851.4	0.204	0.1	LOS A	11.2	79.4	0.00	0.06	0.00	58.8
Approach	762	1.2	7621.2	0.204	0.7	NA	11.2	79.4	0.00	0.07	0.00	58.5
All Vehicles	1885	0.7	$1586^{\mathrm{N}} 0.9$	0.482	2.5	NA	11.2	79.4	0.12	0.20	0.13	53.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

MOVEMENT SUMMARY

∇ Site: 101 [DES2034_Brush Road / Victoria Road_SAT Peak
(Site Folder: DES2034_SAT)]

DES2034

Brush Road / Victoria Road
Saturday Peak
Site Category: (None)
Give-Way (Two-Way)

Mov Turn ID	$\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	JT MES HV] veh/h	DEMAND FLOWS		Deg. Satn v/c	Aver. Level of Delay Service		95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. Aver. No. Speed Cycles km/h	
East: Victoria Road													
5 T1	2637	75	2776	2.8	0.732	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	68.7
Approach	2637	75	2776	2.8	0.732	0.5	NA	0.0	0.0	0.00	0.00	0.00	68.7
North: Brush Road													
7 L2	68	0	72	0.0	0.054	4.6	LOS A	0.2	1.4	0.06	0.51	0.06	52.0
Approach	68	0	72	0.0	0.054	4.6	LOS A	0.2	1.4	0.06	0.51	0.06	52.0
West: Victoria Road													
10 L2	76	1	80	1.3	0.053	6.3	LOS A	0.0	0.0	0.00	0.56	0.00	59.5
11 T1	2674	54	2815	2.0	0.738	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	68.7
Approach	2750	55	2895	2.0	0.738	0.7	NA	0.0	0.0	0.00	0.02	0.00	68.4
All Vehicles	5455	130	5742	2.4	0.738	0.6	NA	0.2	1.4	0.00	0.02	0.00	68.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Licence: NETWORK / 1PC | Processed: Tuesday, 13 September 2022 4:55:14 PM
Project: P:\P5556 West Ryde Multi Sport Facility Peer Review/Technical\Models\P5556.002M Intersection Models.sip9

