AMP Capital

Macquarie Centre Redevelopment Stage 1 Concept DA

Transport Management and Access Plan

Issue | 9 December 2015

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 244810

Arup Arup Pty Ltd ABN 18 000 966 165 **Arup** Level 10 201 Kent Street PO Box 76 Millers Point Sydney 2000 Australia www.arup.com

Contents

			Page
1	Introd	uction	1
	1.1	Background	1
	1.2	Site Description	1
	1.3	Report Structure	2
2	Existir	ng Transport Conditions	3
	2.1	Site Context	3
	2.2	Travel Patterns	4
	2.3	Road Network	6
	2.4	Traffic Volumes	8
	2.5	Access Arrangements	9
	2.6	Parking	9
	2.7	Rail	10
	2.8	Bus	11
	2.9	Taxis	15
	2.10	Pedestrians	16
	2.11	Cyclists	19
3	Propos	sed Development	20
4	Opera	tional Traffic Assessment	22
	4.1	Existing Traffic Data	22
	4.2	2015 Base Traffic Model Development	23
	4.3	Future Year Traffic Growth	29
	4.4	2026 Future Year Modelling Methodology	29
	4.5	Modelling Scenarios	30
	4.6	Traffic Generation	30
	4.7	Traffic Distribution	32
	4.8	Access Flows	33
	4.9	Model Extents	34
	4.10	Intersection Operation	35
5	Public Transport Assessment		
	5.1	Future Public Transport Demands	39
	5.2	Macquarie Centre Interchange Improvements	41
	5.3	Public Transport Impacts	42
	5.4	Conclusions	44
6	Transj	port Assessment	45

6.1	Access Arrangements	45
6.2	Parking Provision	45
6.3	Pedestrians	46
6.4	Car Share	46
6.5	Cyclists	47
6.6	Vehicle Servicing / Loading	47
6.7	Framework Travel Plan	48
6.8	Construction Traffic Management	49
Summ	nary	50

Appendices

7

Appendix A

Base Traffic Model Calibration / Validation Report

Appendix B

SIDRA Intersection Outputs

Appendix C

Internal Traffic and Parking Report (Colston Budd Rogers & Kafes)

Appendix D

Framework Travel Plan

1 Introduction

1.1 Background

This report has been prepared on behalf of AMP Capital (AMPC) in support of a Stage 1 Development Application (DA) for the mixed use redevelopment of Macquarie Shopping Centre (Macquarie Centre). The Stage 1 DA seeks concept approval for the redevelopment of Macquarie Centre by establishing:

- Building envelopes and design parameters for future development on the site, including the proposed uses within the podium and tower components.
- The distribution of floor space across the site.
- Future pedestrian and vehicle connections to and within the site.

This report supports the proposed future redevelopment of the Macquarie Centre in relation to transport.

1.2 Site Description

Macquarie Centre is approximately 11.25 hectares in area and is located at the corner of Waterloo Road, Herring Road and Talavera Road, Macquarie Park. The site is legally described as Lot 100 in DP 1190494.

The site is bound by Herring Road to the north west, Talavera Road to the north east, commercial uses to the south east and Waterloo Road to the south west. Located within the Macquarie Park Corridor, the site has excellent access to public transport, situated immediately adjacent the Macquarie University Railway Station and the Herring Road Bus Station. Located between the M2 Hills Motorway and Epping Road, the site also enjoys excellent vehicle connectivity.

Macquarie Centre was originally constructed in 1981. The centre has undergone various stages of redevelopment and extensions. A major refurbishment occurred in 2000, 2003 and most recently in 2014, creating a fresh food court, David Jones expansion, addition of second full line supermarket (Coles), a value supermarket (Aldi), with new speciality food and convenience stores. Today Macquarie Centre is the largest shopping centre in NSW and the 8th largest shopping centre in Australia and includes a wide range of retail, entertainment and service offerings.

The shopping centre currently spans five levels accommodating 368 stores, including major retailers such as David Jones, Myer, Target, Big W, Aldi, Coles and Woolworths. The centre also houses a large number of mini major international retails stores including H&M, Zara, Uniqlo, Forever 21, GAP and Sephora. A number of entertainment offerings exist in the centre including a cinema complex and ice skating rink. The site currently has a gross floor area of 170,850m² and accommodates 4,755 car spaces.

Figure 1 Aerial photograph

1.3 Report Structure

This report provides a traffic and transport assessment of the proposed development. This report includes an assessment of:

- Existing transport conditions and access arrangements
- Future operation of the road network including detailed traffic modelling
- Public transport assessment including interface of the development with a future Herring Road bus interchange
- Future access arrangements including servicing
- Future parking provision
- Pedestrian and cyclist access and facilities
- Framework for construction traffic management
- Framework for travel demand management

An internal traffic and parking assessment has been prepared by Colston Budd Rogers & Kafes (CBRK). This has assessed parking requirements, access arrangements, loading docks, parking layouts and principles of construction management. The key findings from this assessment are summarised in this main document, with full details provided in Appendix C.

2 Existing Transport Conditions

2.1 Site Context

Macquarie Park is bounded by high order roads serving the North Shore and North West, including the M2 Hills Motorway, Epping Road and Lane Cove Road.

The Macquarie Centre is located in the heart of Macquarie Park, approximately 15km from the Sydney CBD. Nearby major centres including Epping, Chatswood, Top Ryde and Eastwood as shown in Figure 2 below.

Figure 2 Site context

2.2 Travel Patterns

2.2.1 Mode Share

Each day there are approximately 43,000 work trips made to Macquarie Park, a number of which work at the Macquarie Centre. 65% of people travel to work by car (either car driver or passenger), with an average of 1.05 people per vehicle. Since 2001, the proportion of people travelling to work by car has reduced by 10% which is largely a result of the opening of the Epping to Chatswood rail line in 2009.

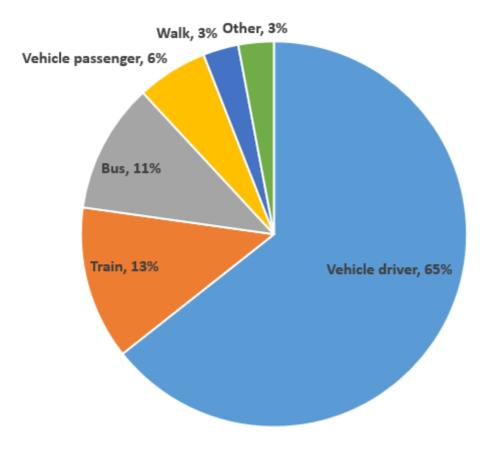


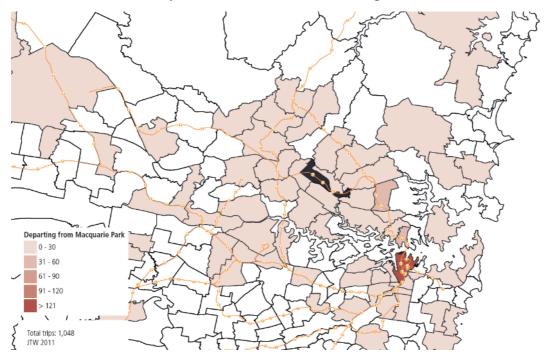
Figure 3 Existing journey to work mode share to Macquarie Park

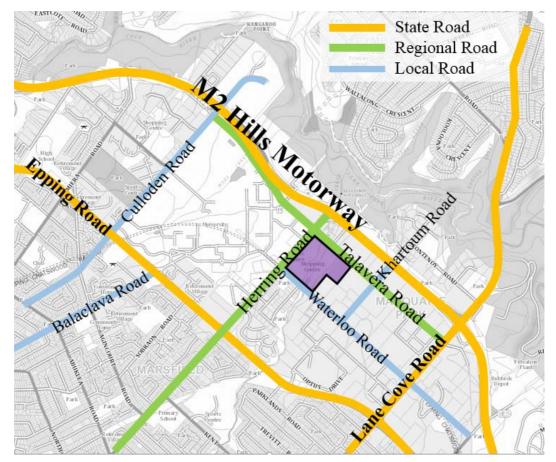
2.2.2 Journey to Work Locations

The home location of workers of Macquarie Park is presented in Figure 4, and indicates the majority of employees live locally.

Figure 4 Home location of workers travelling to Macquarie Park

Figure 5 below illustrates the employment destination of residents of Macquarie Park. The Sydney CBD and Chatswood are the locations with the highest levels of employment, which is conducive to travel to work by train given these destinations are served by a direct rail service from Macquarie Park.




Figure 5 Destination of workers living in Macquarie Park

2.3 Road Network

2.3.1 Major Roads

The Macquarie Centre is surrounded by a number of major roads which carry significant traffic volumes. These roads, including the administrative classification, are:

- Epping Road (State road)
- M2 Motorway (State road)
- Herring Road (Regional road between Epping Road and Talavera Road)
- Talavera Road (Regional road between Lane Cove Road and Culloden Road)
- Waterloo Road (Local road)
- Balaclava Road (Local road)
- Culloden Road (Local road)

Figure 6 Existing road network

Source: SixMaps 2015

2.3.2 Key Intersections

The operation of the Macquarie Park road network is primarily a function of the performance of key intersections including:

- Waterloo Road / Herring Road: Directly adjacent to the Macquarie Centre, this intersection is signalised with pedestrian crossing facilities on all approaches. The northern leg of this intersection provides direct access to MQU.
- **Epping Road / Balaclava Road:** Controlled by traffic signals with pedestrian crossing facilities on all approaches. Left turn slip lanes are provided on the north, south and west approaches. Bus priority lanes exist on Epping Road.
- **Epping Road / Herring Road:** Controlled by traffic signals with pedestrian crossing facilities on all approaches. Bus priority lanes exist on Epping Road.
- Herring Road / Talavera Road / M2 Ramps: The eastern leg of this signalised intersection provides vehicular access to the westbound on-ramp of the M2 Motorway. The western leg provides access to Talavera Road from the new M2 off ramp, with only left and right turn movements permitted. Pedestrian crossing facilities are provided on the eastern and northern legs. Right turn movements from Talavera Road into Herring Road are for buses only.
- **Talavera Road / Technology Place / Christie Road:** This intersection is controlled by traffic signals, with pedestrian crossing facilities on all four legs. The Christie Street leg of the intersection is an extension of the eastbound offramp and on-ramp of the M2 Motorway.
- **Culloden Road / Waterloo Road:** At the northern end of the campus, this intersection is controlled by a roundabout. There are no dedicated pedestrian crossing facilities provided. The southern leg (Gymnasium Road) of the intersection is off-centre with the other three approaches.

2.3.3 Access from the M2

The M2 Hills Motorway is a 6-lane urban motorway connecting Macquarie Park to the Sydney CBD, lower North Shore and the North West growth area.

Figure 7 shows on and off-ramps for Macquarie Park. Herring Road provides a westbound off-ramp and a westbound on-ramp; while Christie Road to the west provides an eastbound off-ramp.

Lane Cove Road provides a full interchange for Macquarie Park access.

Figure 7 Access from M2

2.4 Traffic Volumes

The Macquarie Centre currently generates in the order of 328,000 vehicles per week, equivalent to approximately 46,000 vehicles per day. The daily traffic profile (recorded from car park entry/exit data in November 2014) is presented in Table 1 below.

Time of Day	Monday to Friday		Saturday to Sunday		Monday to Sunday	
	Total	%	Total	%	Total	%
0001-0600	5,239	2%	904	1%	6,143	2%
0601-0900	22,844	10%	9,765	9%	32,609	10%
0901-1200	57,519	26%	28,811	26%	86,330	26%
1201-1500	61,325	28%	34,719	32%	96,044	29%
1501-1800	46,027	21%	23,983	22%	70,010	21%
1801-2100	23,338	11%	9,037	8%	32,375	10%
2101-0000	2,984	1%	1,608	1%	4,592	1%
Total	219,276	100%	108,827	100%	328,103	100%

2.5 Access Arrangements

The existing vehicular access arrangements for the Macquarie Centre are illustrated in Figure 8 below.

Figure 8 Existing access arrangements

2.6 Parking

There currently 4,755 car parking spaces provided within the Macquarie Centre as summarised in Table 2.

Table 2	Existing	car parking
---------	----------	-------------

Parking Area	Existing Spaces
Level 5	231
Level 4A/5	0
Level 4	914
Level 3A/4	147
Level 3	151
Level 2A/3	739
Level 2	502
Level 1A/2	784
Level 1	798
Level 0A	489

Total	4,755
-------	-------

2.7 Rail

Macquarie University Train Station provides the Macquarie Centre with access to the Sydney Trains network. The station opened in 2009 as part of Epping to Chatswood Rail Link, and provides links to the lower North Shore, CBD, Epping and Hornsby. In peak periods, four services per hour operate in each direction on the T1 North Shore, Northern & Western Line. The Macquarie Centre in the context of the existing rail network is shown in Figure 9.

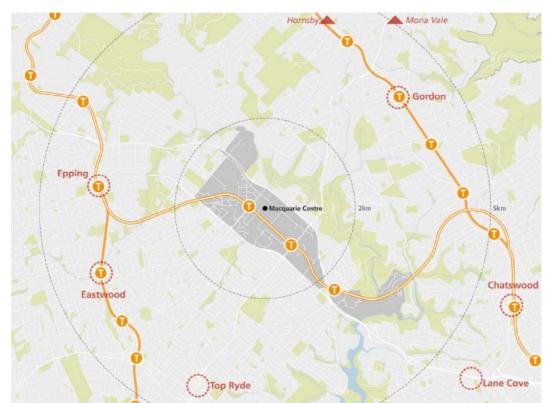


Figure 9 Existing rail network

2.8 Bus

The Macquarie Centre bus interchange, located predominantly in Herring Road, is the hub for some 28 bus routes connecting Macquarie Park with the Sydney CBD, the North Shore, the North West and the West.

The regional bus network and approach corridors are illustrated in Figures 9 and 10 below.

Key bus corridors include the Hills M2 Motorway, which provides access to the North West suburbs (including the centres of Baulkham Hills, Castle Hill, Cherrybrook, Norwest, Bella Vista, Kellyville and Rouse Hill), Epping Road, Lane Cove Road and Herring Road. As well, many bus routes approaching from the north pass through Macquarie University; and some bus routes approaching the interchange from Waterloo Road terminate and lay over in the University grounds.

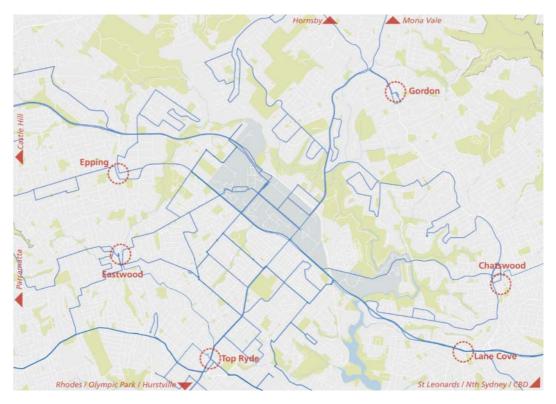


Figure 10 - Regional bus network centred on Macquarie bus interchange

There are nine bus stops comprising the interchange, between Talavera Road and Waterloo Road, with 5 bus stands located on the southern side of Herring Road, adjacent to Macquarie Centre, plus 2 stops each on the north side of Herring Road and the east side of Waterloo Road, south of Herring Road.

Buses access stands A to E, adjacent to Macquarie Centre, by travelling eastbound in Herring Road and performing a u-turn via an overbridge that provides access to the west-facing bus stops, as well as rooftop car park access for the shopping centre.

Additional bus stops in Herring Road and Waterloo Road act as overflow stops, required since the introduction in particular of new bus services from the North west sector which cannot access the main bus interchange stops from Talavera Road. These routes leave the M2 Motorway at Christie Road and turn from Talavera Road to Herring Road using a bus-only access. As there is no vehicle connection to the bus interchange from the Talavera / Herring Road intersection, these buses continue along Herring Road before turning left into Waterloo Road and dropping passengers at stops in Waterloo Road. On their return route, these buses turn right from Waterloo Road to Herring Road, using the bus stop in Herring Road on the north side to drop off and pick up passengers.

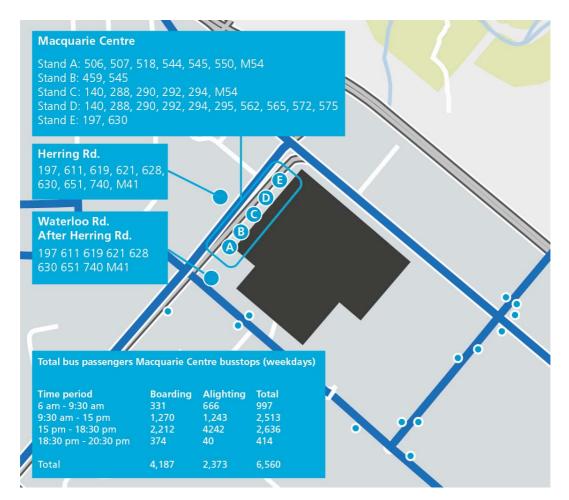


Figure 11 - Macquarie Bus Interchange Local Context

Figure 12 Macquarie Centre bus interchange

During peak periods, some 122 buses operate to and from the Macquarie interchange per hour in peak periods, on some 28 routes. Table 3 summarises AM peak service levels, stops used in the interchange and destinations.

Most bus routes pass through the interchange rather than terminating there, with key terminals in Macquarie Park being Macquarie University (University Avenue and Macquarie Drive) and Macquarie Park station.

Most bus routes approaching from the north pass through Macquarie University before calling at the interchange, approaching via University Avenue. Buses approaching from the south, via Talavera Road or Waterloo Road, must access the interchange via the Waterloo Road / Herring Road intersection to access either the Macquarie Centre bus stands A to E, or the Herring Road stop on the north side of the road.

Bus routes from the North West mainly approach Macquarie Park on the M2 Motorway, using the Christie Road exit to Talavera Road to approach Macquarie Park. On their return route, these bus routes travel east in Herring Road to the Herring Road ramp to the M2 Motorway, westbound.

Bus route	To/From	Buses/h AM peak (both directions)	Stands used
140	Epping-Manly	1	C, D
197	Macquarie Uni-Mona Vale	7	E, Waterloo Rd
288	Epping - City (QVB)	6	C, D
290	Epping - City (QVB)	6	C, D
292	Marsfield - City (QVB)	7	C, D

Table 3 - Existing Bus Interchange Activity

Bus route	To/From	Buses/h AM peak (both directions)	Stands used
294	Macquarie Uni - City (QVB)	1	C, D
295	Macquarie Centre - North Epping	6	C, D
458	Macquarie Uni – Burwood	1	В
459	Macquarie Uni – Strathfield	4	В
506	Macquarie Uni – City	3	А
507	Macquarie Uni – City	1	А
518	Macquarie Uni – City	5	А
544	Macquarie Centre – Auburn	1	А
545	Parramatta – Chatswood	10	A, B
550	Parramatta – Chatswood	0	А
562	Gordon – Chatswood	0	A, E
565	Macquarie Uni – Chatswood	2	D
572	Macquarie Uni – Turramurra	5	Е
575	Macquarie Uni – Hornsby	4	D
611	Macquarie Park – Blacktown	8	Herring, Waterloo
619	Macquarie Park – Rouse Hill	5	Herring, Waterloo
621	Macquarie Park – Castle Hill	4	Herring, Waterloo
628	Macquarie Park – Norwest	3	Herring, Waterloo
630	Macquarie Park – Blacktown	3	Herring, Waterloo, E
651	Macquarie Park – Castle Hill	2	Herring, Waterloo
740	Macquarie Park – Plumpton	3	Herring, Waterloo
M41	Marsfield – Hurstville	12	Herring, Waterloo
M54	Macquarie Park – Parramatta	12	A, C
Total		122	

In addition to regular scheduled bus services, Optus operates an employee shuttle bus between the Sydney CBD (Wynyard station) and the Optus Centre Macquarie Park. This shuttle service runs from the Optus Campus to the Macquarie Centre at lunchtime.

2.9 Taxis

The transport interchange at the Macquarie Centre includes a thirteen-space taxi rank (west-facing) on Herring Road, adjacent to the bus interchange (see Figure 13). A passenger shelter is provided for taxi customers, and taxi drivers can access the rank from Talavera Road and the M2, as well as from Herring Road eastbound by means of an exclusive u-turn lane across the median, near the bus overbridge.

Figure 13 – Macquarie interchange taxi feeder rank

2.10 Pedestrians

Existing pedestrian facilities around the Macquarie Centre generally consist of pedestrian crossings at major road intersections in the precinct, with the exception of one midblock crossing which facilitates the movement of pedestrians between Macquarie Centre, bus stops, and the University.

Surveys indicate more than 1,700 pedestrians currently utilise the pedestrian midblock crossing on Herring Road during the lunchtime peak hour (12.30pm – 1.30pm), travelling between the Macquarie Centre and Macquarie University. This crossing is illustrated in Figure 14 below.

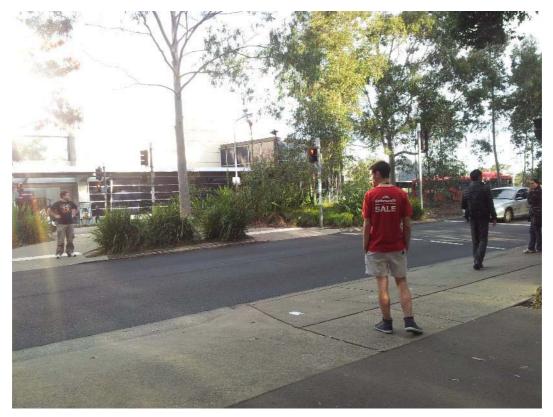


Figure 14 Mid-block pedestrian crossing opposite Macquarie Centre

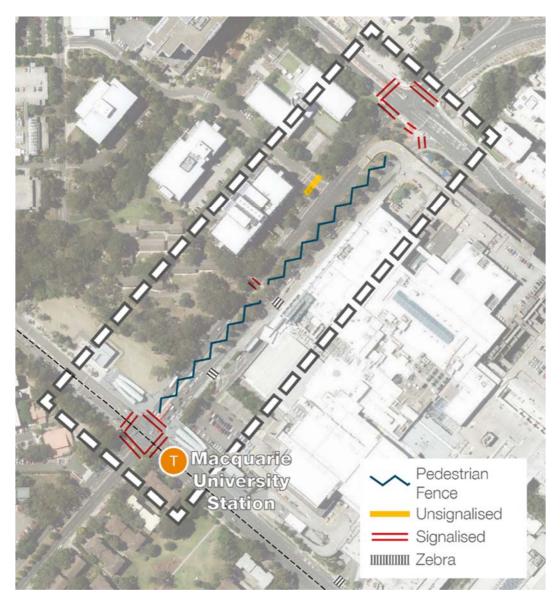


Figure 15 Pedestrian facilities around the Macquarie Centre

Figure 15 shows the extent of pedestrian crossings in the precinct, approximately 150m apart on Herring Road between Talavera and Waterloo Roads.

As Figure 16 shows, there are strong pedestrian desire lines between station entrances, Macquarie University and the Macquarie Centre. During commuter peaks, most pedestrian activity is to and from train station entrances, while in the middle of the day there is a strong demand for pedestrians to cross between the shopping centre and university, mostly utilising the mid-block crossing of Herring Road. This crossing is signalised on Herring Road, but is a zebra crossing at the bus interchange.

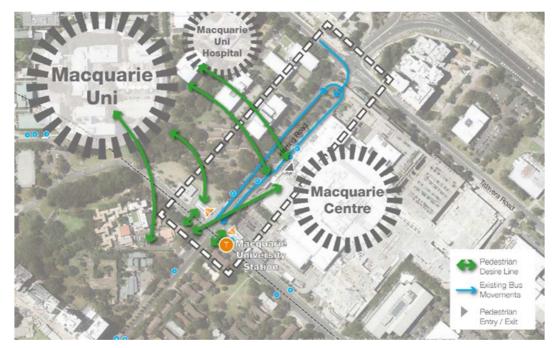


Figure 16 – Current pedestrian desire lines

2.11 Cyclists

Figure 17 shows existing cycling routes and facilities in Macquarie Park. Both Talavera Road and Waterloo Road feature shared off-road bike paths that connect to Herring Road.



Figure 17 Cycle Routes in Macquarie Park

Source: City of Ryde Council

3 Proposed Development

The Stage 1 DA seeks concept approval for the mixed use redevelopment of Macquarie Centre under s.83B of the *Environmental Planning & Assessment Act* 1979. The first stage will seek concept approval only for:

- Mixed use development to enable a range of land uses. The final mix of land uses will be subject to and determined under the relevant Stage 2 detailed DAs.
- Building envelopes for the proposed basement, expanded podium and tower forms.
- The four tower envelopes fronting Herring Road will have maximum heights ranging from 90m and 120m above existing ground level. The building envelope for Tower 1 is of sufficient dimensions to accommodate alternate tower forms.
- Maximum additional gross floor area (GFA) of 148,000sqm.
- The new retail podium along Herring Road will replace the existing structure. This will provide an active frontage with separate pedestrian entries to Herring Road and the creation of a vibrant atrium space.
- The creation of 'Station Plaza' between the train station and shopping centre, framed by active uses and a landmark building known as the "Shard".
- The building envelopes for the proposed basement and upper levels of the expanded podium will accommodate a maximum of 2,175 additional car spaces.
- New vehicle and pedestrian access points.

The Stage 1 DA does not seek approval for

- Any works, including demolition, excavation, construction and public domain improvements.
- The final arrangement of land uses.
- Layout, mix and number of residential units.
- A specific number of car spaces (as this will be determined having regard to the final mix of land uses).
- The design of the building exteriors including facades and roofs.
- Public domain and landscape design.

Such approvals will be sought via subsequent development applications following receipt of development consent for the Stage 1 DA.

The overview of the indicative mix of land uses within the proposed building envelopes is identified in Table 4 below.

Component	Proposed
Basement	Loading docks, car parking and associated vehicle circulation, waste rooms, utilities, future connection to existing train station (subject to consent from RailCorp) and retail premises.
Podium	Retail premises, commercial premises, food and drink premises, entertainment facilities, recreation facilities (indoor), recreation area, car parking and associated vehicle circulation, community uses (subject to further discussions with Council) and communal open space associated with the towers.
Tower 1	Mixed use development comprising commercial premises and/or residential accommodation and/or serviced apartments above a retail podium.
Towers 2, 3 and 4	Mixed use development comprising residential accommodation and/or serviced apartments above a retail podium.

For the purposes of the traffic assessment, two options have been considered for residential/commercial components:

- Option 1: 4 residential towers along the Herring Road frontage (915 residential dwellings) and an additional 39,700m² retail GLA
- Option 2: 3 residential and 1 commercial tower along the Herring Road frontage (615 residential dwellings and 44,000m² commercial GFA) and an additional 39,700m² retail GLA

4 **Operational Traffic Assessment**

4.1 Existing Traffic Data

Traffic data collected by Arup over recent periods has been used to inform the findings of this analysis. Details of the data collected are provided below.

4.1.1 Traffic count surveys- Thursday 1 August 2013

Turning movement data was collected at four locations in the Macquarie Park area on Thursday 1 August 2013. Surveys were conducted between 7am - 10am (AM) and 4pm – 7pm (PM), and were undertaken during University term and following the opening of the new M2 ramps at Herring Road and Christie Road.

University H Macquarie University Macquar University Librar Macqu 1 Park Travelex University N arie University Macquarie Central Morlina College 🗢 A3 The Park 角 Macquar Macqu Kent Road Public Schoo

The locations of the intersections surveyed are illustrated in Figure 18.

Figure 18 August 2013 traffic surveys

As data used to inform the analysis in this study was collected over different days, results of these traffic counts in August 2013 were used as the basis to scale up/down other traffic volumes in the precinct.

4.1.2 RMS SCATS Counts – July 2015

The RMS provided Arup with SCATS counts for the Khartoum Road / Talavera Road and Lane Cove Road / Talavera Road intersection collected in July 2015. For lanes with shared movements, traffic volumes were proportioned out based on an intersection count undertaken at this location in 2007.

4.1.3 Origin – Destination Surveys – 8 August 2013

Arup commissioned Sky High Traffic Data Australia to undertake an origindestination survey of Macquarie University in August 2013. The purpose of this survey was to ascertain the number of vehicles utilising the internal roads of the University as a through route whilst travelling through Macquarie Park.

The survey was conducted on Thursday the 8th of August 2013, during both morning and afternoon peak periods:

- AM Peak: 7am 10am
- PM Peak: 4pm 7pm

4.2 2015 Base Traffic Model Development

The development of the 2015 base model has been undertaken utilising the existing Macquarie Park Paramics model developed for City of Ryde Council, and as updated by Arup in recent years. This process was undertaken in accordance with the RMS Traffic Modelling Guidelines (February 2013) as well as the Paramics Micro-simulation Modelling RTA Manual, (RTA 2009). The key role of the micro-simulation model is predominantly as an assignment tool, allowing an assessment of the relative impact of growth.

4.2.1 Road network updates

A review of the previously developed model yielded the following required changes to the network to reflect the current situation:

- Addition of slip lane on the western approach to the Balaclava Road/ Epping Road intersection, opened in June 2012
- Updated Macquarie Centre access roads following the expansion of the site in October 2014.
- Updated bus routes and timetable information within the model

4.2.2 Model Calibration

Model calibration is the process of refining a models parameters to adequately reflect observed traffic behaviour to a sufficient level to satisfy the model objectives. In micro-simulation models the task involves a review of global and local parameters that relate to network and demand matrix definition and assignment. Different models require different levels of calibration. Larger models, such as the Macquarie Park paramics model, are generally more difficult to calibrate than small models.

The base model was primarily calibrated on the basis of:

- A comparison of the modelled base case network against the current road network
- Comparison of modelled turning movements to observed turning movements at key intersections around the site

Calibration of the model also involved a detailed visual review of the model during simulation including inspection of:

- node placement
- kerb placement
- stop line positioning to ensure realistic progression of vehicles between links
- logical lane changing characteristics, by reviewing signposting, next lanes and link characteristics
- merge characteristics on links

Further detail on the calibration process is described in the following sections.

The outcomes of the above process are discussed briefly below.

Random Seed Values

The calibration of the base AM/PM model was performed using the seed value 2849, as was used in the original Paramics model. Once the model was calibrated, a further four runs were completed using Roads and Maritime specified seed values, as summarised in Table 5. The modelled results reported show the average of these five runs.

Table 5 Seed values used for Paramics modelling

Seed Value				
28	560	2849	7771	86524

Intersection Turning Counts

A key part of the calibration of a micro-simulation model involves an adequate correspondence of modelled turning movements to observed turning movements. The statistic most commonly used to measure modelled turning movement counts against observed turning movement counts is the GEH statistic:

 $GEH = \sqrt{(M-C)2/(\frac{1}{2}(M+C))},$

Where M is the modelled flow and C is the observed flow.

The GEH statistic is a chi-squared statistic which accounts for the magnitude of the difference between the observed and modelled values together with the magnitude of the observed value.

Queue Lengths

The model was calibrated to reflect queuing in the model on the basis of visual inspections undertaken by Arup on a number of different days throughout the study period. Key locations for calibration included:

- Epping Road from Herring Road to Culloden Road
- Waterloo Road from Byfield Street to Herring Road
- Herring Road from Epping Road to Talavera Road
- Talavera Road from Culloden Road to Lane Cove Road

4.2.3 Bus Demands

Existing bus movements within Macquarie Park (as previously outlined in Section 2.8 of this report) were included within the base traffic model.

4.2.4 Model Calibration Results

The criteria adopted for the purposes of this exercise was to achieve

- For 85% of all turning movements, the comparison of modelled flow to observed flow will have a GEH less than 5.
- For all turning movements, the comparison of modelled flow to observed flow will have a GEH less than 10.

This is in accordance with that stipulated in the Roads and Maritime's *Traffic Modelling Guidelines* for calibration of a micro-simulation model. The results of the model calibration are given below.

Peak Period	Total turn movements	GEH < 5		GEH > 10		
		Number	%	Number	%	
AM	19	44	92%	1	2%	
PM	48	44	92%	0	0%	

Table 6Model calibration results

The calibration process yielded a GEH value of 5 or less for greater than 90% of turning movements in both peak hours. The calibration statistics meet the adopted criteria in the PM peak for all turning movements with a GEH less than 10. The criteria is also met in the AM peak with the exception of:

• Balaclava Road right turn into Epping Road, GEH marginally greater than 10 (11). This movement is outside the core study area and not considered to have a material impact on the future year transport analysis.

Critically, through the core study area (Herring Road between Waterloo Road and Talavera Road), there was a good correlation between observed and modelled counts. Differences between the modelled and observed turning movements for the Herring Road corridor are no more than 100 vehicles with GEH values less

than 5. This demonstrates the model is 'fit for purpose' and suitable to model future year traffic impacts.

Additionally, the model has been well calibrated for the right turn from Lane Cove Road into both Talavera Road and Waterloo Road. In both peak hours, a GEH value of less than 5 has been achieved for these movements, with actual differences (between modelled and observed) less than 50 vehicles.

As stated in the introduction to this section, large network models are generally not expected to be as well calibrated as small intersection models. In the instances above the turning movements only fail marginally to meet the adopted criteria and the first two movements are relatively insignificant. The calibration on the basis of turning movement counts is therefore acceptable and fit for purpose.

4.2.5 Model Validation

The model was validated on the basis of travel times on key routes possessing an average modelled travel time within the range of the observed maximum and minimum times. This method has previously been used to validate the Macquarie Park Paramics model.

Travel time surveys were conducted on Thursday 5 March 2015 between 7.45 - 8.45 AM and Wednesday 4 March 2015 between 4.45 - 5.45 PM. Both of these days were representative of typical traffic conditions during peak periods in the Macquarie Park area. A minimum of 5 runs were completed on each route, with up to 9 runs undertaken some routes.

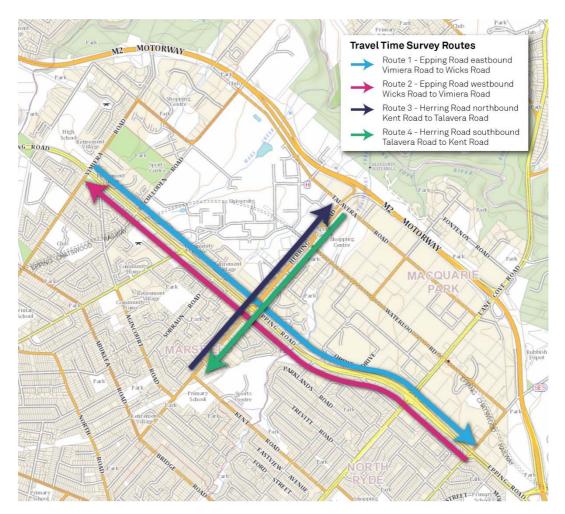


Figure 19 Travel Time Routes for Base Model Validation

Table 7 and Table 8 summarise the results of the validation. The validity of the travel times were assessed based on two factors:

- Whether the modelled travel time was less than 15% or 60 seconds of the average observed travel time
- Comparing average modelled travel times to the range of observed minimum and maximum travel times

Route	Modelled Travel Time (min)	Obs	Observed Travel Times		Acceptable Range (+- 15% or 60s of Ave)		Validation	
		Min	Ave	Max	Min	Max	Min / Max	+-15% / 60s
Route 1	07:11	03:41	05:34	10:21	04:34	06:34	OK	out of range
Route 2	05:52	07:00	09:02	11:41	07:40	10:23	out of range	out of range
Route 3	07:35	04:13	06:21	07:47	05:37	07:37	OK	OK
Route 4	03:51	03:37	05:02	06:13	04:02	06:02	OK	out of range

 Table 7 AM Peak Travel Time Validation Summary

Route	Modelled Travel Time (min)	Observed Travel Times		Acceptable Range (+- 15% or 60s of Ave)		Validation		
		Min	Ave	Max	Min Max		Min / Max	+-15% / 60s
Route 1	06:39	07:00	09:02	11:41	07:40	10:23	OK	out of range
Route 2	08:29	06:30	09:21	13:08	07:57	10:45	OK	OK
Route 3	04:50	03:37	05:17	07:06	04:17	06:17	OK	OK
Route 4	06:45	05:23	07:33	11:01	06:25	08:41	OK	OK

Table 8	PM Peak	Travel Time	Validation	Summary
---------	---------	-------------	------------	---------

Table 7 and Table 8 demonstrates that the AM and PM base model is validated satisfactorily for the travel routes (both inbound and outbound) along Herring Road. This travel route passes through the core study area and reflects the suitability of the model to assess future transport conditions. Route 4 in the AM peak hour sits just outside the 15% margin (11 seconds). This is considered a minor discrepancy given the good calibration results achieved along the Herring Road corridor and this route is in the counter peak direction.

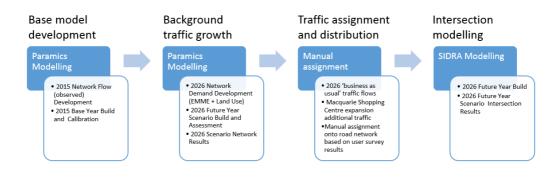
Travel times for Route 1 in the AM and PM model were found to be outside 15% of the average observed travel time. These routes are however outside the core study area of Herring Road and are not considered to have a significant impact in testing future transport scenarios. In addition, the significant range between minimum and maximum observed travel times demonstrates the variability and congested nature of the Macquarie Park road network which highlights that complete validation will be very difficult to achieve.

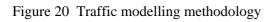
4.3 Future Year Traffic Growth

Future year traffic demand forecasts for the forecast year 2026 are comprised of the following components:

- Changes to traffic demand on the wider road network (background traffic growth)
- Increased traffic demand attributable to the growth of the Macquarie University campus
- Increased traffic demand attributable to the Herring Road priority precinct

Future year AM/PM origin-destination demand matrices were developed (as part of the micro-simulation traffic modelling exercise) according to the following methodology:


- Base AM/PM demand matrix as the starting point
- For trips between internal to external and external to external zones of the model network, traffic growth rates were derived from a combination of the STM traffic forecasts and a cordon matrix from the RMS's strategic EMME model (excluding trips to/from STM zone representing MQU).
- Addition of forecast Macquarie University traffic generation (refer to Section 5.1.2 in Appendix A of this document)
- Addition of forecast Herring Road priority precinct traffic (refer to Section 5.1.4 in Appendix A of this document) to/from a number of modelled zones along the Herring Road corridor.


The origin-destination demand matrices indicate global traffic growth across the Macquarie Park network in the future year 2026 are as follows:

- AM peak hour: 1.5% per annum
- PM peak hour: 1.1% per annum

4.4 2026 Future Year Modelling Methodology

Shown in Figure 20 below, is the modelling methodology used to generate the traffic modelling results. This methodology aligns with that agreed with the Roads and Maritime and City of Ryde Council.

4.5 Modelling Scenarios

Two modelling scenarios have been considered in this assessment to determine the traffic impacts arising from the proposed development of the Macquarie Centre, as presented in Table 9 below. These scenarios consider the future land use development envisaged under the Herring Road priority precinct.

Modelling Scenario	Development Scenario					
	Background traffic growth including Herring Road PP	Without Macquarie Centre expansion	With Macquarie centre expansion			
Scenario 1	1	1	×			
Scenario 2	1	×	1			

Table 9 Traffic modelling scenarios

4.6 Traffic Generation

Estimates of traffic generation of the various components of the Stage 1 DA have been based on RMS Guidelines (residential component) and surveys (retail and commercial components). For the residential component, the traffic generation rates for high density residential development are set out in RMS TDT 2013/04. The TDT suggests the following rates:

- Weekday morning peak hour -0.19 trips per unit (two way); and
- Weekday afternoon peak hour -0.15 trips per unit (two way).

For the Saturday midday peak hour the weekday afternoon rate of 0.15 trips per unit (two way) has been adopted.

For the commercial component a generation rate of 0.5 trips per parking space (two way) has been adopted. This reflects the constrained parking and good access to public transport.

For the retail component the existing shopping centre was found to have a traffic generation of 0.9 trips per $100m^2$ GLA in the weekday morning peak hour, 3.0 trips per $100m^2$ GLA in the weekday (Thursday) afternoon peak hour and 4.0 trips per $100m^2$ GLA in the Saturday midday peak hour. These rates are based on surveys of the shopping centre undertaken in February 2015 and adjusted to reflect November traffic flows (adopted as the design month).

A summary of the traffic generation forecasts for both option 1 (4 residential towers and additional retail) and option 2 (3 residential towers, 1 commercial tower and additional retail) is provided in Table 10. This indicates option 2 will generate slightly more traffic in the critical AM and PM commuter peaks, and therefore has been adopted as a worst case scenario for the purposes of the traffic modelling.

Component	Rate	Option 1		Optio	Option 2				
		Size	Total Trips	Size	Total Trips				
Weekday AM									
Retail	0.9/100m ²	40,000m ²	360	40,000m ²	360				
Residential	0.19/unit	915 units	180	615 units	120				
Commercial	0.5/space	0		300 spaces	150				
Total			540		630				
Weekday PM	Weekday PM								
Retail	3.0/100m ²	40,000m ²	1200	40,000m ²	1200				
Residential	0.15/unit	915 units	140	615 units	90				
Commercial	0.5/space	0		300 spaces	150				
Total			1340		1440				
Saturday									
Retail	4.0/100m ²	40,000m ²	1600	40,000m ²	1600				
Residential	0.15/unit	915 units	140	615 units	90				
Commercial	0.5/space	0		300 spaces	0				
Total			1740		1690				

Table 10 Traffic generation forecasts

4.7 Traffic Distribution

The additional traffic generated by the Stage 1 DA has been distributed to the arrival/departure routes and centre accesses based on surveys of existing shoppers at the centre, counts of traffic movements at the access points, changes in access arrangements to/from the shopping centre and review of existing traffic patterns on the surrounding road network. This is provided in further detail within the internal traffic and parking report prepared by Colston Budd Rogers & Kafes (Appendix C).

A summary of the arrival and departure traffic distribution from the wider road network is provided in Figure 21 and Figure 22 respectively.

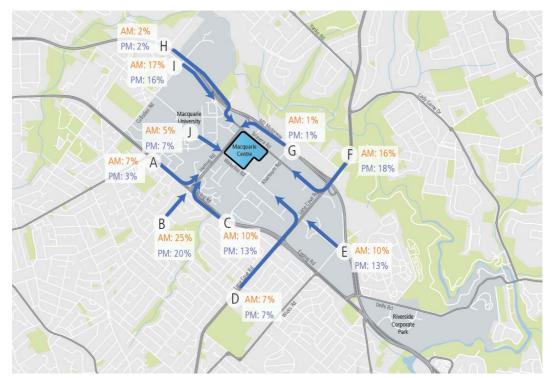


Figure 21 Arrival distribution from wider road network

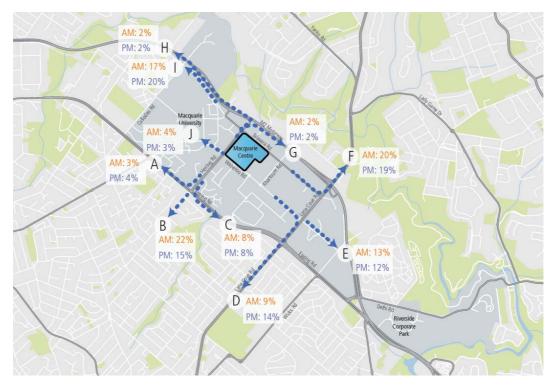


Figure 22 Departure distribution from wider road network

4.8 Access Flows

The additional traffic entering and exiting each access point into the Macquarie Centre as a result of the proposed development is summarised in Table 11 below.

Access	AM Peak Hour		PM Peak Hour	
	In	Out	In	Out
l. Talavera Road (east) -Traffic Signals	30	15	50	50
2. Talavera Road (central) - LI/LO	5	5	5	20
3. Talavera Road (west) - Traffic	90	115	180	355
3A. Talavera Road entry to Tower car park (left in only)	45	0	30	0
4. Herring Road (north) - upper level entry/exit from Silver Car Park	5	0	35	30
5. Herring Road (central) - upper level	n/a	45	n/a	70
6. Herring Road (south)	n/a	-55	n/a	-250
7. Waterloo Road (west) - entry only	20	n/a	15	n/a
8. Waterloo Road (central) -Traffic	130	115	295	310
9. Waterloo Road (east) - LI/LO	25	40	80	165

Table 11 Change in access flows

4.9 Model Extents

As agreed by RMS and City of Ryde Council, the intersection traffic modelling included the following intersections:

- Talavera Road / Lane Cove Road
- Waterloo Road / Lane Cove Road
- Herring Road / Epping Road
- Herring Road / Waterloo Road
- Herring Road / Talavera Road
- Epping Road / Balaclava Road
- Talavera Road / Khartoum Road

It should be noted that modelling for the Waterloo Road / Khartoum Road intersection has not been undertaken at this time given that this intersection is to be upgraded to traffic signals in the future by City of Ryde Council. The layout of this intersection was not available to Arup at the time of writing.

Traffic modelling was undertaken for a typical weekday AM and PM peak hours, with the exception of the Herring Road / Waterloo Road and Herring Road / Talavera Road intersections where the Saturday peak hour was also modelled. This is illustrated in Figure 23.

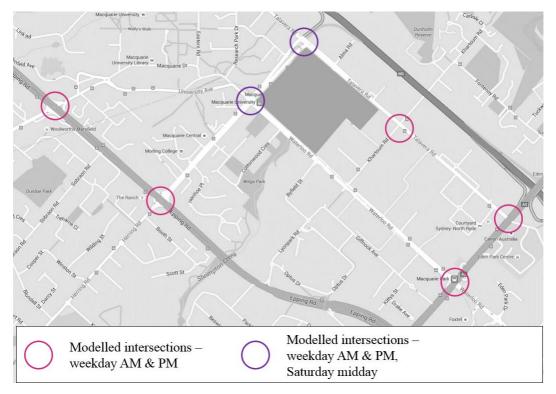


Figure 23 Traffic model extents

4.10 Intersection Operation

4.10.1 Methodology

The future road network performance has been assessed using the SIDRA 6.1 intersection analysis software. Intersection performance has been measured against three parameters, those being:

- Level of Service (LOS)
- Degree of Saturation (DOS)
- Average Vehicle Delay (AVD)

The performance of intersections in an urban environment is measured in terms of its Level of Service (LoS). Levels of service ranges from A (very good) to F (over capacity with significant delays). This is described in the RTA Guide to Traffic Generating Developments. Across the Macquarie Park road network, it is not uncommon for intersections to operate at Level of Service E or F (at capacity) during commuter peak hours.

4.10.2 Results

The results of the traffic modelling are presented in Table 12, Table 13 and Table 14 for the AM, PM and Saturday peak hours respectively. Full results are provided in Appendix B.

Intersection			AM Peal	k Hour		
		Base		Bas	e + Prop	osal
	Deg Sat	LOS	Delay (s)	Deg Sat	LOS	Delay (s)
Epping Road / Balaclava Road	0.86	С	32	0.91	С	35
Epping Road / Herring Road	1.18	F	130	1.29	F	177
Herring Road / Talavera Road	0.98	D	54	0.96	D	54
Herring Road / Waterloo Road	0.74	D	46	0.81	D	46
Khartoum Road / Talavera Road	1.28	F	95	1.33	F	99
Lane Cove / Talavera Road	1.06	Е	60	1.13	F	75
Lane Cove / Waterloo Road	1.22	F	178	1.27	F	198

Table 12 Intersection Operation – AM Peak Hour

Deg Sat - Degree of saturation; LOS - Level of Service; Delay - Average vehicle delay

Intersection			PM Peal	k Hour		
		Base		Bas	e + Prop	osal
	Deg Sat	LOS	Delay (s)	Deg Sat	LOS	Delay (s)
Epping Road / Balaclava Road	1.20	Е	67	1.20	Е	67
Epping Road / Herring Road	1.13	F	86	1.16	F	97
Herring Road / Talavera Road	0.72	D	45	0.81	D	47
Herring Road / Waterloo Road	0.96	Е	60	1.04	Е	66
Khartoum Road / Talavera Road	0.81	В	29	0.92	С	30
Lane Cove / Talavera Road	1.63	F	337	1.63	F	344
Lane Cove / Waterloo Road	1.08	F	94	1.12	F	129

Table 13 Intersection Operation - PM Peak Hour

Deg Sat - Degree of saturation; LOS - Level of Service; Delay - Average vehicle delay

Table 14 Intersection Operation – Saturday Peak Hour

Intersection			Saturday P	eak Hour		
		Base		Bas	e + Prop	osal
	Deg Sat	LOS	Delay (s)	Deg Sat	LOS	Delay (s)
Herring Road / Talavera Road	0.33	С	31	0.85	С	31
Herring Road / Waterloo Road	0.60	С	36	0.63	С	35

Deg Sat - Degree of saturation; LOS - Level of Service; Delay - Average vehicle delay

4.10.3 Conclusions

The traffic modelling indicates a number of intersections are forecast to function above their operational capacity in the forecast year 2026. At many intersections, even without an expansion of the Macquarie Centre, intersections were found to operate at Level of Service F. Therefore upgrades are required irrespective of any future development at the Macquarie Centre.

With the proposed development of Macquarie Centre, it is expected that average delays at these intersections would increase. It should be noted however that changes in delay as a result of the proposal are relatively minor and generally in the order of 10% or less. The exception to this is at already saturated intersections such as Epping Road / Herring Road and Lane Cove Road / Talavera Road where minor increases in traffic can result in significant increases in vehicle delays.

Importantly, the modelling indicates that the proposal does not result in any change to intersection level of service compared with the base scenario. For the Saturday peak hour, the intersections along Herring Road were found to continue to operate satisfactorily following the completion of the proposed expansion.

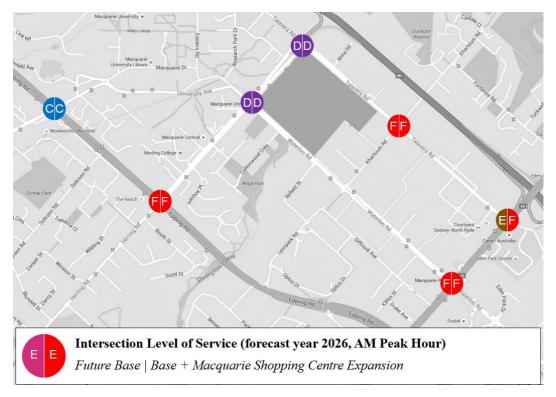


Figure 24 Intersection level of service - AM peak hour

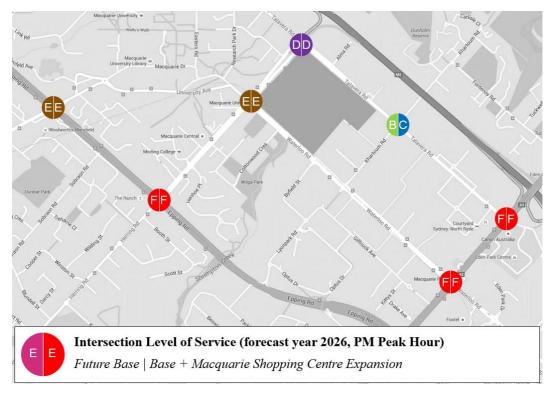


Figure 25 Intersection level of service - AM peak hour

4.10.4 Improvement Works

At this preliminary stage of the development process, improvement works have been identified at a number intersections where modelling forecasts these sites to operate above capacity in future years. Further investigation into these improvement works (including infrastructure works, signal optimisation, other mitigating measures) could be undertaken as the project progresses, and detailed in subsequent development applications, which further enhance the performance of the road network in the future. This would be undertaken in close consultation with key stakeholders such as City of Ryde Council, Roads and Maritime and Transport for NSW.

Potential improvements are listed in Table 15 below.

Intersection	Potential Improvement Works
Epping Road / Balaclava Road	• Creation of an additional traffic lane on Balaclava Road on the southern approach to Epping Road. This would be achieved without road widening by narrowing the southbound general traffic lane in Balaclava Road between Epping Road and Koorong Street.
Epping Road / Herring Road	• Modify signal phasing to provide double diamond (currently split phasing on Herring Road approaches. This would be achieved by signalising the slip lane on the Epping Road north west approach.
	• Provide additional through lane on the Herring Road south west approach. This may require land acquisition from the adjacent Ranch Hotel.
	• Grade separation of the intersection, potentially including a tunnel for the right turn movement from Epping Road (south east) to Herring Road.
Herring Road / Talavera Road	• No upgrades considered necessary given intersection is modelled to operate at Level of Service D in future
Herring Road / Waterloo Road	• Provide an additional left turn lane on Herring Road south west by shifting existing central median across to reduce number of southbound departure lanes from three to two.
	• Provide dual right turn bay on Waterloo Road south east approach by shifting existing central median across to reduce number of eastbound departure lanes from three to two
Khartoum Road / Talavera Road	• Investigate modified signal phasing to provide shared through/right turn lane on Talavera Road north west approach
Lane Cove / Talavera Road	• Provide a staged pedestrian crossing on the south west approach of the intersection to reallocate green time to adjacent movements.
Lane Cove / Waterloo Road	• Remove one right turn lane on Lane Cove Road south west approach to enable diamond phasing arrangement on Waterloo Road approaches.
	• Provide additional traffic lane on Waterloo Road south east approach by shifting existing central median across to reduce number of eastbound departure lanes from three to two

Table 15 Potential improvement works

5 Public Transport Assessment

5.1 Future Public Transport Demands

5.1.1 Rail demand

Transport for NSW provided forecasts of AM peak period (6.00 am to 9.30 am) train customer entries and exits for 2016, 2021 and 2036, including the impacts of the Herring Road Priority Precinct, as well as Metro North West and the subsequent Sydney Metro. These are summarised in Table 3 and show substantial growth forecast for station exits (that is, customers using the train to get to Macquarie Park) and more modest growth in customers entering the station in the morning peak (that is, customers getting on trains at Macquarie Park to go somewhere else).

The future forecasts in Table 3 are compared with latest existing data from 2013. This shows that by 2013, Macquarie University station was primarily a destination station, with more than double the number of customers leaving the station in the morning peak, than entering.

This destination role will continue to increase in importance, with 2036 forecasts showing that destination customers will outnumber outbound customers by more than 4 times. Destination customers will grow by 180% while outbound customers (who have origins in Macquarie Park) will increase by 75%.

Macquarie University station entries in 2013 are similar to:

- Waverton station (AM peak entries) and
- Kogarah station (AM peak exits)

By 2036, Macquarie University's demands will be similar to:

- Current Meadowbank station (AM peak entries)
- Current St Leonards station (AM peak exits)

	20)13	20	16	20	21	20	36
Time	20 Entry 1,130	Exit	Entry	Exit	Entry	Exit	Entry	Exit
0600-0930	1,130	2,990	1,280	3,940	1,570	6,250	1,980	8,480

Table 16 – Macquarie University station customer forecasts

Source: Transport for NSW

5.1.2 Future bus demand

Transport for NSW provided forecasts for future bus spaces in the Herring Road bus station post-NWRL, to 2036. These forecasts were based on transport modelling for different growth scenarios for trips to and from Macquarie Park, with a medium long-term growth scenario adopted which included growth from the Herring Road Priority Precinct, the introduction of North West Metro and adoption of City of Ryde Council's 40% non-car mode Journey to Work target, comprising the following growth assumptions:

- 50% increase in bus trips
- 57% increase in peak hour services
- 2.7% growth per year in services

TfNSW identified the following bus space requirements in the bus station in 2019 (following introduction of the NWRL), 2026, and 2036 with Sydney Metro in place (see Table 17).

As the table shows, the current bus station capacity is considered adequate for post-NWRL operations to 2026, at which an additional space will be required (on opening of NWRL, some bus routes to Macquarie Park from the North West will be discontinued). By 2036, an additional 4 spaces will be required, for a total of 14 passenger bus stops in the bus station.

Year	AM peak hour bus flow	Bus spaces needed	Additional spaces required
2015	122	9	0
2019	150	9	0
2026	Not provided	10	1
2036	236	14	5

Table 17 – TfNSW Future Bus Space Requirements, Herring Road Bus Station

TfNSW's forecast assumes some reorganisation of bus routes to improve efficiency of the existing stops in the bus station, allowing a substantial increase in bus flows through to be accommodated without a need to expand the number of bus stops.

5.2 Macquarie Centre Interchange Improvements

To facilitate the Macquarie Centre expansion, the Macquarie Centre's 5 bus stops within the Herring Road bus station, largely on AMP property, will be reconfigured to improve bus-rail transfer distances and improve customer access to the reconfigured Herring Road frontage for the shopping centre and commercial and retail towers.

There will be no change to the existing bus stops in Herring Road outside the university; and in Waterloo Road south of Herring Road; and no change to the taxi rank in Herring Road, or the kiss & ride parking space in Herring Road outside the university.

The proposed bus station arrangements are illustrated in Figure 26.

As the figure shows, adjustments to the Herring Road median near Waterloo Road and closure of the shopping centre car park egress driveway on Herring Road near Waterloo Road will permit lengthening of lane 1 in Herring Road westbound and allow relocation of bus stops A to E some 60 metres closer to the Macquarie University station entrance. In this way the bus station stops will better serve busrail customers, as well as customers of the shopping centre and commercial and retail buildings of the proposed development.

There would be no change to bus routes accessing or egressing the bus station, and no change to the location or operation of other interchange modes, including kiss & ride and taxis. The bus layover space in the bus station would remain in its current location towards the eastern end.

The bus stops would be supported by bus shelters, seats and awnings that would also be consistent with the needs of a possible future enhancement of the Herring Road bus interchange.

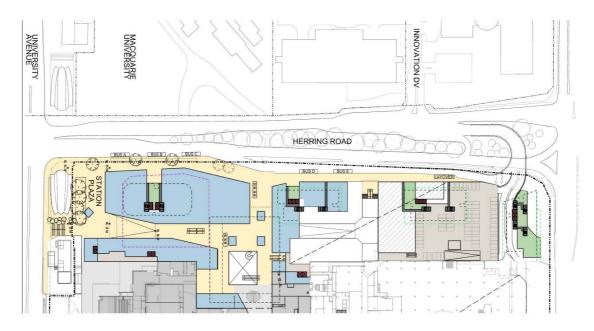


Figure 26 Proposed Herring Road Bus Station Arrangements

5.3 Public Transport Impacts

Public transport impacts of the proposed Macquarie Centre expansion include:

- The need to accommodate increased bus flows forecast by TfNSW to cater for expected increased passenger demand from the proposed development;
- Increased train and bus passenger demands from increased retail floorspace, as well as new commercial floorspace and residential units in the development proposal; and
- Ensuring associated changes to the bus station support the different functions of the bus station, including catering for intermodal transfer as well as access to adjacent activities.

5.3.1 Accommodation of increased bus flows

As indicated in this report, Transport for NSW has forecast future bus flows for the bus station following the introduction of North West Metro as a shuttle service between Cudgegong Road and Chatswood stations (assumed 2019) and in 2036, assuming operation of the full Sydney Metro between Cudgegong Road and Bankstown via the Sydney CBD.

The Transport for NSW forecasts take into account Ryde Council public transport growth targets and NSW Government projections for population and employment within the Herring Road Priority Precinct (of which the Macquarie Centre expansion proposal is a part).

As previously shown in Table 17, the existing 9 stops in the bus station would accommodate forecast future bus flows to 2025.

TfNSW has identified that the identified pedestrian-vehicle conflict at the pedestrian crossing of the Macquarie Centre bus roadway will need to be resolved to ensure efficient future operation of the bus station. This can be achieved by signalisation of the crossing (bus stop locations in the Macquarie Centre expansion bus station proposals would permit signalisation) or pedestrian grade separation, by other.

TfNSW, Macquarie University and AMP Capital are working together to investigate and develop options for eventual bus station expansion and improvements to ensure sufficient longer-term bus and customer capacity.

The impact of the proposed redevelopment has been taken into account in TfNSW bus route and network planning for the bus station with the North West Metro in place in 2019, and up to 2036. This work shows that the existing interchange stops in the interchange will be adequate to 2025.

5.3.2 Accommodation of passenger demand

Public transport patronage forecasting by TfNSW for Macquarie University interchange (including the Herring Road bus station) to 2036 includes development of the Herring Road Priority Precinct, of which the Macquarie Centre expansion is a part. The TfNSW forecasts indicate a 50 per cent increase in bus passenger trips in the bus station, meaning an increase from some 6,600 passenger boardings and alightings at the bus station stops per day, to 9,900 per day.

Based on bus stop occupancy surveys and calculations, the number of people expected to be waiting for a bus in the bus station at one time in the evening peak will increase to 138 people, or 28 people per stop in 2036.

Based on a Fruin level of service C for queuing areas, this would require some $111m^2$ of waiting space by 2036.

Based on TfNSW growth rates, passenger activity in the bus station is expected to increase by 17 per cent over current levels by 2019. This would result in a PM peak waiting passenger accumulation of some 108 passengers, requiring some $87m^2$ of waiting space.

By 2025, when the existing bus station bus stop provision is expected to be at capacity, it is estimated that bus passenger activity in the interchange would have grown by some 17 per cent, for an estimated PM peak waiting passenger accumulation of some 127 people, requiring some $101m^2$ of waiting space.

The estimated passenger waiting space available in the Herring Road bus station under the Macquarie Centre expansion proposal would be some 474 m^2 , leaving some 373m^2 (or 78 per cent of the available footpath space) for pedestrian circulation by 2025.

Passenger space in the proposed bus station would be ample for expected levels of demand up to 2025.

Future bus station expansion and improvement options being investigated by TfNSW, Macquarie University and AMP Capital are intended to accommodate future bus and passenger demands, as well as other activity associated with the Herring Road Priority Precinct and will be compatible with the Macquarie Centre expansion.

5.3.3 Interchange function

As indicated elsewhere in this report the Macquarie Centre transport interchange performs two important functions:

- Facilitating intermodal transfer, particularly between bus and train; and
- Providing access to workers, students and other visitors to the precinct, including the Macquarie Centre and Macquarie University.

The relocation of bus stops A to E as part of the Macquarie Centre redevelopment proposal will:

- Move bus stops closer to the Macquarie University station entrance by 60 metres, reducing walking distance for intermodal customers;
- Improve the relationship of the bus stops to the entrances to the shopping centre, and the commercial and residential tower lobbies, promoting bus access and providing convenient access to bus stops for residents, workers and other visitors to the development.

Other interchange components, including taxi rank and kiss & ride parking, will not be affected by the development.

5.4 Conclusions

As part of the expansion of Macquarie Centre, bus stops in the Herring Road bus station will be relocated to improve bus-train customer transfer distance, and to improve the relationship of the bus stops to the shopping centre and residential and commercial towers proposed as part of the development.

The capacity of the bus station will be adequate to 2025 (beyond 2019 interchange improvements which are expected to be identified by TfNSW in association with AMP Capital and Macquarie University) for both expected bus flows and bus passengers.

There will be no other changes to taxi ranks and kiss & ride parking as part of the proposed redevelopment.

Passenger forecasting and bus service and network planning for the Herring Road bus station has included the impacts of the Herring Road Priority Precinct (of which the proposed Macquarie Centre expansion is a part) as well as the North West and Sydney Metro projects (the first of which is under construction).

6 Transport Assessment

6.1 Access Arrangements

Access to the shopping centre will be maintained via the existing driveways onto Herring Road, Talavera Road and Waterloo Road. In association with the proposed expansion to the shopping centre, the following changes to access are proposed:

- A new entry driveway to the new tower parking (commercial and/or residential parking) will be provided off Talavera Road east of Herring Road;
- One new loading dock access driveway and a reconfigured existing loading dock access driveway will be provided off Talavera Road, between Herring Road and Link Road.
- Removal of the existing car park exit driveway onto Herring Road, located to the north of Waterloo Road.
- An additional exit lane on the Link Road approaches to the traffic signal controlled intersections with Waterloo Road and Talavera Road

Access arrangements, including internal circulation and design issues, are discussed in further detail in the internal traffic and parking report prepared by Colston Budd Rogers & Kafes (Appendix C).

6.2 Parking Provision

The following section outlines the proposed parking arrangements serving the Macquarie Centre, undertaken by Colston Budd Rogers & Kafes and detailed in Appendix C.

6.2.1 Retail Car Parking

The existing shopping centre provides some 4,755 parking spaces. With some $136,300m^2$ GLA, this is a provision of 3.5 spaces per $100m^2$ GLA. Analysis indicates that that provision of additional retail parking at the existing rate would satisfactorily cater for the parking generated by the expanded retail area. On this basis the expanded retail area (some 39,700m² GLA) would require an additional 1,390 parking spaces. Parking for the expanded retail area will be provided at a rate of 3.5 spaces/100m² GLA. Appropriate disabled and bicycle parking will be provided in accordance with Council requirements.

6.2.2 Residential Car Parking

For the high density residential component, parking will be provided consistent with the City of Ryde DCP 2014 rates as set out below:

- 0.6 spaces per one bedroom dwelling;
- 0.9 spaces per two bedroom dwelling; and
- 1.4 spaces per three bedroom dwelling

Visitor parking would be provided at a rate of 1 space per 10 units. Any additional visitor parking could be accommodated within the main retail car park, noting the sites close proximity to the rail station/bus interchange and that peak visitor parking would occur at night when retail parking demand is lower.

6.2.3 Commercial

For the commercial component, on-site parking has been constrained to minimise traffic generation and encourage travel to/from work by public transport (noting the sites close proximity to the rail station/bus interchange). A total of 300 on-site parking spaces are proposed, a rate of one space per 158m² GFA. This is lower than the rate of 1 space per 80m² GFA set out in DCP 2014.

It should be noted that Council has resolved to amend their commercial parking rates for the Macquarie Park corridor down to 1 space per 100m² GFA. The reduced parking rate for the Macquarie Centre is considered appropriate given the site's close proximity to nearby public transport and the overall objective of reducing peak hour traffic generation – aligning with City of Ryde's mode share target of 40% non-car trips for journeys to work.

6.3 **Pedestrians**

The Macquarie Centre already has good pedestrian access from the surrounding area. The proposed development involves the provision of two new improved access points to the shopping centre along the Herring Road frontage, in close proximity to the Macquarie University railway station and bus interchange. This is particularly important for the new residents and commercial workers within the development. The proposal also involves improved internal circulation and connectivity for pedestrians.

6.4 Car Share

The Macquarie Park DCP notes that 1 car share space should be provided for every 50 proposed residential parking spaces. The quantum and location of car share spaces within the Macquarie Centre will be confirmed in subsequent development applications.

6.5 Cyclists

Secure on-site bicycle parking and end of trip facilities (e.g. lockers and change rooms) will be provided for the new residents and commercial workers in the precinct.

AMP Capital are currently investigating the provision of additional bicycle parking spaces in the public domain for use of visitors to the precinct. The quantum and location of these spaces will be detailed in subsequent development applications following close consultation with City of Ryde Council and Transport for NSW. It is important a 'whole of precinct' approach is considered when assessing the requirement for visitor bicycle parking – given the shopping centre's proximity to the bus and rail interchange. There may be opportunities for sharing of spaces given commuter demand will be highest on weekday morning and afternoon, with demand from the shopping centre highest on weekends.

6.6 Vehicle Servicing / Loading

Existing loading areas will be reconfigured and additional loading areas will be provided as part of the Stage 1 DA to service the additional retail and commercial/residential areas. Two new loading areas are proposed which are further detailed in in the internal traffic and parking report prepared by Colston Budd Rogers & Kafes (Appendix C). These areas are as follows:

- Northern loading area to service the existing department store and new retail area. This loading area would be located immediately west of Link Road and would have left in/left out access from Talavera Road
- Western loading areas to service new retail area located adjacent to Herring Road and the new commercial/residential towers.

6.7 Framework Travel Plan

The Macquarie Centre will be easily accessible for employees, residents and visitors through a number of different transport modes. This can be enforced through the introduction of a suite of travel demand management measures contained within a framework travel plan (FTP). The primary purpose of the Framework Travel Plan measures is to achieve the target mode split for journey to work trips of 40% public transport / 60% private vehicle for the new residents and commercial workers within the Macquarie Centre.

The main objectives of the FTP are to reduce the need to travel and promotion of sustainable means of transport. The implementation of a FTP would address travel demand and sustainable travel initiatives for the residential, commercial and retail components of the Macquarie Centre, and would bring benefits such as:

- Residents and employees can enjoy improved health, less stress, a better quality of life, cost and time savings, and greater travel choice;
- Reduced traffic congestion;
- Benefit from improved air quality, less noise and pollutants; and
- Deliver health benefits, tackle obesity and improve residents quality of life

The FTP details proposed initiatives to encourage sustainable travel alternatives. The FTP is catered to residents, visitors and staff of the Macquarie Centre. The FTP also includes aspects of monitoring and administration to ensure the schemes are executed and improved over time.

A detailed Framework Travel Plan is provided in Appendix D of this document.

6.8 Construction Traffic Management

Details regarding arrangements for construction traffic management is provided in the internal traffic and parking report prepared by Colston Budd Rogers & Kafes (Appendix C). As a general principle, construction of the proposed development will be staged to minimise traffic effects and to maintain the continued operation of the shopping centre during the period of construction. Pedestrian activity on adjacent streets including Talavera Road, Waterloo Road and Herring Road will be protected with the provision of appropriate construction barriers.

The overall principles for traffic management during construction of the development will include:

- Maintain appropriate parking for customers, associated with the on-going operation of the centre;
- Maintain access to properties located in the vicinity of the site at all times during the construction process;
- Maintain access for delivery vehicles associated with the continued operation of the shopping centre;
- Manage and control construction traffic movements on the adjacent road network and vehicles movements to and from the construction site;
- Trucks to enter and exit the site in a forward direction;
- Maintain traffic capacity in the vicinity of the site;
- Restrict construction vehicle activity to designated truck routes through the area;
- Construction access driveways and on-street work zones to be managed and controlled by site personnel;
- Provide a convenient and appropriate environment for pedestrians;
- Maintain convenient access and circulation for public transport;
- Pedestrian movements adjacent to construction activity, across construction access driveways and to/from public transport facilities along Herring Road and to/from the various on-site car parking areas will be managed and controlled by site personnel;
- Traffic marshals will manage and control traffic movements on the surrounding road network adjacent to the shopping centre to ensure appropriate access to adjacent properties and to maintain two-way access at all times during the construction period; and
- Pedestrian warning signs and construction safety signs/devices to be utilised in the vicinity of the site and to be provided in accordance with WorkCover requirements;
- Construction activity to be carried out in accordance with Council's approved hours of work.

7 Summary

This transport management and accessibility plan has been prepared on behalf of AMP Capital (AMPC) in support of a Stage 1 Development Application (DA) to be submitted to the City of Ryde Council. The Stage 1 seeks concept plan approval for the expansion of Macquarie Centre by establishing:

- Building envelopes and design parameters for future development on the site, including the proposed uses within the podium and tower components.
- The distribution of floor space across the site.
- Future pedestrian and vehicle connections to and within the site.

Key findings of the assessment in relation to transport are as follows:

- Access arrangements will be modified to account for changes in parking layouts, changes to the surrounding road network and to accommodate the additional traffic generated by the Stage 1 DA
- Retail parking will be provided at the same rate as currently provided for the shopping centre, residential parking consistent with the City of Ryde DCP 2014 rates and commercial parking constrained due to the site's good proximity to nearby public transport.
- Traffic modelling indicates a number of intersections are forecast to function above their operational capacity in the forecast year 2026. At many intersections, even without an expansion of the Macquarie Centre, intersections were found to operate at Level of Service F. Therefore upgrades are required irrespective of any future development at the Macquarie Centre.
- The modelling indicates that the proposal does not result in any change to intersection level of service compared with the base scenario. For the Saturday peak hour, the intersections along Herring Road were found to continue to operate satisfactorily following the completion of the proposed expansion.
- At this preliminary stage of the development process, improvement works have been identified at a number intersections. Further investigation into these improvement works could be undertaken as the project progresses in consultation with key stakeholders.
- Bus stops in the Herring Road bus station will be relocated to improve bustrain customer transfer distance, and to improve the relationship of the bus stops to the shopping centre and residential and commercial towers proposed as part of the development. The capacity of the bus station will be adequate to 2025 for both expected bus flows and bus passengers.
- Secure on-site bicycle parking and end of trip facilities (e.g. lockers and change rooms) will be provided for the new residents and commercial workers in the precinct.

Appendix A

Base Traffic Model Calibration / Validation Report

Intersectio	n of Epping Road and Ba	laclava Road Thursday, 1 August 2013
		Austraffic
Survey Start Intersection Type Intersection No. North Approach East Approach South Approach West Approach Date	7:00 AM 15:30 PM Cross Junction S Balactava Road Epping Road Balactava Road Epping Road	Balaclava Road prog Budg
Classification	Light Heavy Bus	

					🔵 Came	ra Position							
			VEHICLE	MOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ						
7:00 - 7:'	5 4 0 3 7	6 0 1 7	2 0 0 2	11 1 0 12	136 4 3 143		120 4 0 124	27 3 1 31	3 1 0 4	7 1 0 8	512 10 2 524	27 0 7 34	885 24 17 926
7:15 - 7:3	0 2 0 3 5	9 2 3 14	4 0 0 4	23 0 0 23	142 4 6 152	60 2 0 <mark>62</mark>	166 4 0 170	58 0 2 60	7 1 0 8	13 0 0 13	466 6 5 477	19 2 1 22	969 21 20 1010
7:30 - 7:4	5 2 0 6 8	15 0 1 16	4 0 1 5	22 0 1 23	163 6 6 175	56 5 0 61	153 3 2 158	61 0 2 63	6 0 0 6	20 0 0 20	495 5 5 505	47 0 3 50	1044 19 27 1090
7:45 - 8:0		4 0 1 5	5 0 0 5	33 0 0 33	170 4 6 180	61 0 2 63		80 0 2 82	11 1 0 12	14 1 0 15	432 3 3 438	48 1 4 53	1028 13 20 1061
8:00 8:1	5 8 0 5 13	14 0 2 16	7 0 0 7	39 0 1 40	151 5 2 158	62 5 2 69	136 4 0 140	77 0 0 77	4 0 0 4	22 0 0 22	404 7 5 416	65 0 3 68	989 21 20 1030
8:15 8: 8:30 8:	0 6 0 1 7	12 0 2 14	5 0 0 5	64 0 0 64	173 6 6 185	58 3 0 61	172 1 0 173	96 0 2 98	4 1 0 5	19 0 0 19	380 1 4 385	82 0 3 85	1071 12 18 1101
8:30 8:4	5 9 0 7 16	15 1 1 17	9 0 0 9	70 1 0 71	162 6 4 172	47 1 1 49	158 1 0 159	91 0 3 94	9 0 0 9	26 0 0 26	382 3 2 387	55 0 9 64	1033 13 27 1073
8:45 9:0	0 7 0 3 10	11 0 1 12	5 0 0 5	77 1 0 78	133 6 4 143	54 2 0 56	156 2 0 158	78 0 2 80	9 1 0 10	16 0 1 17	378 5 2 385	52 0 7 59	976 17 20 1013
9:00 - 9:1	5 7 0 4 11	18 0 1 19	3 1 0 4	36 0 0 36	139 3 4 146	54 2 0 56	130 3 1 134		15 1 0 16	20 0 0 20	407 7 4 418	58 1 6 65	982 18 22 1022
9:15 - 9:1	0 11 0 5 16	15 0 2 17	10 0 1 11	45 0 0 45	105 7 5 117	45 1 6 52	151 6 0 157	55 0 2 57	9 0 0 9	27 3 0 30	355 5 2 362	49 2 5 56	877 24 28 929
9:30 - 9:4	5 3 0 1 4	13 0 1 14	10 1 0 11	50 0 0 50	183 5 3 191	61 2 3 66	120 5 0 125 123 4 0 127	49 0 1 50	11 0 0 11	18 1 0 19	375 7 6 388	53 0 2 55	946 21 17 984
9:45 10:	00 16 0 3 19	22 0 1 23	13 0 0 13	53 0 0 53	128 16 4 148	60 0 0 60	123 4 0 127	55 0 2 57	12 0 0 12	18 1 0 19	375 7 6 388 310 3 2 315	51 0 5 <u>56</u>	861 24 17 902
Σ	77 0 43 120	154 3 17 174	77 2 2 81	523 3 2 528	1785 72 53 1910	648 23 14 685	1753 40 3 1796	822 3 21 846	100 6 0 106	220 7 1 228	4896 62 42 5000	606 6 55 667	11661 227 253 12141

			VEHICLE N	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ				Light Heavy Bus Σ							
15:30 - 15:4	5 46 0 3 49	33 1 2 36	26 0 0 26	19 0 1 20	360 5 0 365	137 8 0 145	84 1 0 85	23 0 1 24	36 1 0 37	24 0 0 24	215 3 3 221	15 1 5 21	1018 20 15 1053
15:45 - 16:0	0 44 0 5 49	45 1 3 49	38 0 1 39	21 0 0 21	384 3 1 388	135 2 0 137	68 0 1 69	21 1 1 23	25 0 0 25	35 0 0 35	190 0 7 197	23 0 4 27	1029 7 23 1059
16:00 - 16:1	5 57 0 4 61	60 0 0 60	51 0 0 51	15 0 0 15	371 5 5 381	145 0 0 145	85 0 0 85	24 0 4 28	30 0 0 30	33 0 0 33	210 3 3 216	13 0 2 15	1094 8 18 1120
16:15 - 16:3	0 61 0 3 64	50 0 3 53	27 1 0 28	13 0 0 13	342 5 2 349	177 2 1 180	84 0 0 84	22 0 3 25	20 0 0 20	24 1 1 26	225 1 2 228	16 2 4 22	1061 12 19 1092
16:30 - 16:4	5 56 0 4 60	72 0 2 74	29 0 0 29	20 0 0 20	347 4 3 354	160 4 0 164	82 1 1 84	26 0 3 29	23 0 0 23	36 0 0 36	195 1 4 200	21 1 5 27	1067 11 22 1100
16:45 - 17:0	0 48 0 5 53	64 0 1 65	31 0 0 31	12 0 0 12	285 6 1 292	157 0 0 157	71 3 0 74	31 0 1 32	33 0 0 33	26 1 0 27	219 1 2 222	19 0 3 22	996 11 13 1020
17:00 - 17:1	5 67 0 5 72	68 0 2 70	55 0 0 55	15 0 0 15	330 1 2 333	167 5 0 172	79 0 0 79	23 0 2 25	24 0 0 24	41 0 0 41	224 2 2 228	20 0 3 23	1113 8 16 1137
17:15 - 17:3	0 50 0 3 53	81 0 3 84	44 0 0 44	13 0 0 13	302 4 0 306	141 3 0 144	85 0 0 85	32 0 3 35	22 0 0 22	41 1 0 42	248 2 2 252	17 0 5 22	1076 10 16 1102
17:30 - 17:4		60 0 0 60	26 0 0 26	15 0 0 15	302 2 4 308	162 1 0 163	85 0 1 86	34 0 2 36	27 1 0 28	45 0 0 45	176 0 2 178	26 0 5 31	1003 4 17 1024
17:45 - 18:0	0 57 0 5 62	67 0 3 70	30 0 0 30	22 0 1 23	324 6 1 331	157 0 1 158	75 0 0 75	35 0 2 37	34 0 0 34	33 0 0 33	184 1 1 186	25 0 0 25	1043 7 14 1064
18:00 - 18:1		71 0 1 72	33 0 0 33	18 0 2 20	295 0 4 299	138 0 0 138	85 0 0 85	26 0 2 28	37 0 0 37	30 0 0 30	207 1 7 215	19 0 3 22	1003 1 23 1027
18:15 - 18:3	0 37 0 8 45	47 0 2 49	25 0 0 25	8 0 0 8	335 2 2 339	129 0 0 129	92 1 0 93	17 0 2 19	33 0 0 33	30 0 0 30	251 0 2 253	12 0 5 17	1016 3 21 1040
Σ	612 0 52 664	718 2 22 742	415 1 1 417	191 0 4 195	3977 43 25 4045	1805 25 2 1832	975 6 3 984	314 1 26 341	344 2 0 346	398 3 1 402	2544 15 37 2596	226 4 44 274	12519 102 217 12838

HOURLY FLOW													
			VEHICLE	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	16 30 42 2 7 51 20 0 14 32 45 0 6 51 21 0		Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S
7:15 - 8:15 7:30 - 8:30 7:45 - 8:45 8:00 - 9:00 8:15 - 9:15 8:30 - 9:30	14 0 16 30 18 0 14 32 25 0 15 40 30 0 16 46 29 0 15 44 34 0 19 53 28 0 13 41	42 2 7 51 45 0 6 51 45 1 6 52 52 1 6 59 56 1 5 65 59 1 5 65	20 0 1 21 21 0 1 22 26 0 0 26 26 0 0 26 22 1 0 23 27 1 1 29	117 0 2 119 158 0 2 160 206 1 1 208 250 2 1 253 247 2 0 240 228 2 0 230	626 19 20 665	213 8 1 222 200 6 7 213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	276 : 0 : 6 : 282 314 0 : 6 : 320 344 0 : 7 : 351 342 0 : 7 : 343 360 0 : 9 : 369 319 0 : 9 : 328 277 0 : : : : :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 1 0 70 75 1 0 76 81 1 0 82 83 0 1 84	1711 16 17 1744 1598 14 14 1626 1544 16 13 1575 1547 16 12 1575 1522 20 10 1552	179 3 11 193 242 1 13 256 250 1 19 270 254 0 22 276	4030 74 87 4191 4132 65 85 4282 Pe 4121 59 85 4265

			VEHICLE I	IOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus S
15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 16:30 - 17:30 16:45 - 17:45 17:00 - 18:05 17:70 - 18:15	222 0 16 238 232 0 17 249 221 0 17 238 210 0 16 226 219 0 16 226 219 0 16 226	188 2 8 198 227 1 6 236 246 0 6 252 254 0 8 262 255 0 8 262 273 0 6 273 276 0 8 264 276 0 8 264 276 0 8 264 278 0 7 266	142 1 0 143 159 0 0 159	68 0 1 69 69 0 0 69 60 0 0 60 60 0 0 60 60 0 0 60 55 0 0 55 65 0 1 66 68 0 3 71	1457 18 8 1431 1444 17 11 1472 1345 20 11 1376 1304 16 8 1328 1264 15 6 1285 1219 13 7 1239 1258 13 7 1239 1252 12 9 124	594 12 1 607 617 8 1 626 639 6 1 646 661 11 1 646 625 12 0 637 627 9 0 636 627 9 1 637 598 4 1 603	321 1 1 323 319 1 2 322 322 4 1 327 316 4 1 321 317 4 1 322 320 3 1 324 320 3 1 324 320 3 1 324 320 3 1 324 320 3 1 324 330 0 1 325	90 1 9 100 93 1 111 105 103 0 11 114 102 0 9 111 112 0 9 121 120 0 8 128 124 0 9 135 127 0 9 136	111 1 0 112 98 0 0 98 106 0 0 106 100 0 0 100 102 0 0 102 106 1 0 102 106 1 0 107 107 1 0 108 120 1 0 107	116 1 1 118 128 1 1 130 119 2 1 122 127 2 1 130 144 2 0 146 153 2 0 155 160 1 0 161 149 1 0 150	840 7 15 862 820 5 16 841 849 6 11 866 863 5 10 878 886 6 10 902 867 5 8 880 832 5 7 844	67 3 15 85 73 3 15 91 69 3 15 94 76 3 15 94 77 1 16 94 82 0 16 98 88 0 13 101 87 0 13 100	4202 47 75 4324 4251 38 82 4371 Pr 4218 42 72 4332 4237 4237 42 70 4349 4252 4252 40 67 4359 4283 4188 33 62 4283 4283 4252 29 63 4327 4277 4126 22 70 4243 4243

																				O Ca	amera	Positi	on																														
											VEH	ICLE N	IOVEM	ENT																								VE	HICLE N	NOVEM	ENT												
TIME PE	ERIOD		1			2	2			3					4				5					6				7				8				9			1	0			11				12			GR	AND TO	OTAL	
		Light H	avy Bu	sΣ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Ligh	t Hea	vy B	us	Σ	Light	Heavy	Bus	Σ	Ligh	t Hear	vy Bus	Σ	Ligh	t Heav	y Bus	Σ	Light	t Heav	y Bus	Σ	Light	Heavy	Bus	Σ	Light I	leavy	Bus	ΣΙ	Light H	leavy I	Bus	ΣL	ight H	eavy B	Sus 🔡	ε
7:00 -	7:15	5	0 6	11	15	0	3	18	13	1	15	29	24	5	10	39	12	0	1	1	13	20	2	0	22	71	2	0	73	83	3	4	90	15	1	0	16	8	0	0	8	18	0	0	18	5	1	12	18 2	289	15 5	51 3	55
7:15 -	7:30	8	0 10) 18	22	1	1	24	17	3	11	31	15	2	13	30	29	0	1	1	30	18	1	0	19	110	1	0	111	102	0	3	105	18	1	0	19	12	0	0	12	28	2	0	30	11	0	5	16 3	390	11 4	44 4	45
7:30 -	7:45	8	1 5	14	31	0	5	36	26	1	12	39	24	2	10	36	30	0		2	32	23	4	0	27	116	2	0	118	119	0		123	39	1	1	41	7	0	0	7	39	0	0	39	8	1	7	16 4	170	12 4	46 5	28
7:45 -	8:00	13	0 6	19	23		4	27	24	2	13		26	1	9	36	39	1				18			19	144	5	0	149	154		- 4	159	57	. 0	0	57			0		38		0	39				32 5	572	11 4	48 6	31
8:00	8:15	16	0 10) 26	27	0	5	32	29	0	12	41	16	0	14	30	51	0	(0	51	25	2	2	29	172	- 1	: 0	173	142	0	3	145	42	1	0	43	16	2	0	18	66	1	0	67	21	0	9	30 E	523	7 5	55 6	85
8:15	8:30		0 8		24	0	1	25	35	1	10	46	34	5	14	53	64	0		0	64	29	3	1	33	142		0	143	143	3	3	149	53		0	55	17	0	1	18	60	0	0	60	20	0	8	28 6	333	15 4	46 6	94 Î
8:30	8:45	11	0 6	17	23	0	7	30	31	1	17	49	32	1	17	50	54	0		1		30	0	0	30	195		0	197	160	1 3	3	166		0	0	63	14	0	0	14	41	1	0	42	17	0	9	26 6	71	8 6	60 7	39
8:45	9:00	19	0 9	28	16	2	3	21	21	1	11	33	30	0	9	39	68	1	(n :		27		1	31	180		: 1	182	148	2	5	155			0	77	9	0	0	9	51	0	0	51	21	1	13	15	366	12 4	52 7	20 1
0.00	0.15	10	0 12	21	26	0 5	6	32	18	1	12	31	35	0	19	54		0		2	66	38	1	0	39			0	146	143	2	2	147			0	57	9	0	0	9	39	0	3	42	22	1	13	16	\$15	6 6	a 03	an i
9:15 -	9:30	12	0 10	22	25	11	5	31	26	0	13	39	36	2	18	56	56	0		1	57	28	<u>i</u>	1	30	113	1	0	114	166	2	4	172	57	0	0	57	11	0	ō	11	20	11	0	21	12	3	8	3	62	11	80 6	<u>.</u>
9:30	9:45	17	0 3	20	30	2			22		12		51		11	62	50		÷;		51	30	i 1		32	82			88				170		0		53	10		0	10	23	0	2	25	17	0	8		551	46	44	~ i
9:45		14	0 13			2	1	29	24	1		34				65					86	53		t in	54	96	3	0	99	148			154							ő	14	22	ő	1.1	23	11	0	9			9	50 6	ša i
Σ	10.00	154	1 98	253	288	8	43	339	286	15	147	448	376		154		603	2	1	0 6	615	339	18	8	365	1566	25	2	1593		4 20	41	1735	578	8	1	587	141	2		144	445	6	6	457	187	7	111 3	05 6	637 1	132 6	22 73	91

				VEHICLE MOV	/EMENT						VEHICLE MOVEMENT			
	TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
		Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ Light	ght Heavy Bus Σ Light	ght Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ
15	:30 - 15:45	16 0 6 22	88 1 5 94	28 0 10 38 5	50 0 8 <mark>58</mark> 39	9 1 1 41	106 0 0 106	56 0 0 56	122 1 4 127	19 0 0 19	29 0 0 29	36 2 0 38	35 0 11 46	624 5 45 674
15	45 - 16:00	12 0 14 26	76 1 5 82	26 2 11 39 4	19 0 0 49 62	2 1 1 64	132 1 1 134	57 0 0 57	123 1 5 129	14 0 0 14	25 0 0 25	48 0 1 49	37 0 10 47	661 6 48 715
16	:00 - 16:15		112 0 4 116	26 1 11 38 5	58 1 11 70 52	2 0 2 54	164 2 2 168	28 0 0 28	112 1 0 113	14 0 0 14	51 0 0 51	72 0 0 72	43 0 10 53	752 5 49 806
16	:15 - 16:30		95 0 5 100	26 1 10 37 7	76 0 8 84 45	5 0 0 45	130 2 2 134	56 0 1 57	122 0 4 126	23 0 0 23	31 0 0 <mark>31</mark>	37 1 0 38	38 0 12 50	696 4 50 750
16	:30 - 16:45	24 0 13 37	112 0 4 116	30 0 12 42 5	54 2 11 67 53	301 <u>54</u>	154 4 1 159	54 1 0 55	141 2 7 150	25 0 0 25	48 0 0 48	48 1 0 49	41 0 9 50	784 10 58 852
16	:45 - 17:00	15 0 7 <u>22</u>	88 0 6 94	26 0 15 41 7	73 0 18 <mark>91</mark> 62	203 <u>65</u>	161 1 0 162	42 1 0 43	127 0 2 129	19 0 0 19	37 0 0 37	51 0 0 <mark>51</mark>	38 0 9 47	739 2 60 801
17	:00 - 17:15	23 0 10 33	114 0 3 117	28 1 19 48 9	93 1 10 104 52	2 0 1 53	190 0 1 191	46 0 0 <mark>46</mark>	147 0 2 149	24 0 0 24	53 0 0 53	74 0 0 74	56 0 14 70	900 2 60 962
17	15 - 17:30	25 0 6 31	89 0 6 95	31 0 13 44 5	52 0 13 <u>65</u> 69	903 <u>72</u>	158 1 1 1 <mark>60</mark>	63 0 0 <mark>63</mark>	171 0 3 174	27 0 0 27	56 0 0 56	53 0 0 53	39 0 13 <mark>52</mark>	833 1 58 892
17	:30 - 17:45		95 0 5 100	18 0 9 27 6	32 0 11 73 66	6 0 1 <mark>67</mark>	131 1 2 134	57 0 0 5 7	138 0 4 142	18 0 0 18	43 0 0 43	65 0 0 65	43 0 10 53	761 1 50 812
	:45 - 18:00	31 0 9 40	75 0 3 78	27 0 14 41 6	57 0 11 <mark>78</mark> 59	9 0 1 60	128 0 1 129	53 0 0 <mark>53</mark>	156 3 3 162	17 0 0 17	29 0 0 29	62 0 0 62	51 0 7 58	755 3 49 807
	:00 - 18:15	27 0 8 35	77 0 2 79	23 0 15 38 5	55 2 12 69 47	7 0 1 48	125 0 0 125	50 1 0 51	167 0 4 171	17 0 0 17	43 0 0 43	71 0 0 71	53 0 12 65	755 3 54 812
18	:15 - 18:30	10 0 12 22	79 0 3 82	34 1 12 47 7	79 0 17 <mark>96</mark> 45	5 0 2 47	116 0 0 116	72 0 0 72	205 0 3 208	18 0 0 18	50 0 0 50	36 0 0 36	28 0 6 34	772 1 55 828
	Σ	245 0 110 355	1100 2 51 1153	323 6 151 480 76	68 6 130 904 651	51 2 17 670	1695 12 11 1718	634 3 1 638	1731 8 41 1780	235 0 0 235	495 0 0 495	653 4 1 658	502 0 123 625	9032 43 636 9711

HOURLY FLOW													
			VEHICLE	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S
7:00 - 8:00 7:15 - 8:15	34 1 27 62 45 1 31 77	91 1 13 105 103 1 15 119	80 7 51 138 96 6 48 150	89 10 42 141 81 5 46 132	110 1 5 116 149 1 4 154	79 7 1 87 84 7 3 94	441 10 0 451 542 9 0 551	458 4 15 477 517 1 14 532	156 3 1 160	41 0 0 41 49 2 0 51	123 3 0 126 171 4 0 175	46 2 34 82 62 1 31 94	1721 49 189 1959 2055 41 193 2289
7:30 - 8:30 7:45 - 8:45	49 1 29 79 52 0 30 82	105 0 15 120 97 0 17 114	114 4 47 165 119 4 52 175	100 8 47 155 108 7 54 169	184 1 3 188 208 1 2 211	95 9 4 108 102 5 4 111	574 9 0 583 653 9 0 662 690 6 1 606	558 4 14 576 599 7 13 619	191 4 1 196 215 3 0 218	61 2 1 64	205 3 0 208	71 1 34 106 80 0 36 116	6 2298 45 195 2538 6 2499 41 209 2749
8:00 - 9:00 8:15 - 9:15	61 0 35 96	90 2 16 108 89 2 17 108	116 3 50 169 105 4 50 159	112 6 54 172 131 6 59 196	250 1 3 254	111 8 4 123 124 7 2 133	662 5 1 668	594 10 13 617	249 3 0 252	56 2 1 59 49 0 1 50	191 1 3 195	79 1 39 119 80 2 43 125	2593 42 213 2848 2585 41 227 2853 Pe
	61 0 37 98 67 0 34 101	90 3 21 114 97 5 16 118	96 3 53 152 87 5 48 140	133 3 63 199 152 2 57 211	242 1 4 247 238 1 4 243	123 5 2 130 123 6 3 132	633 5 1 639 520 8 2 530	617 9 14 640 623 10 11 644		43 0 0 43 39 0 0 39		72 5 43 120 72 5 42 119	2514 37 241 2792 2394 44 222 2660
9:00 - 10:00	62 0 38 100	107 5 14 126	90 5 46 141	175 4 58 237	256 0 4 260	149 3 3 155	436 10 1 447	623 8 12 643	215 1 0 216	44 0 0 44	104 1 6 111	62 4 38 104	2323 41 220 2584

			VEHICLE I	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ
15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 16:30 - 17:40 16:45 - 17:45 17:50 - 18:00 17:15 - 18:15	76 0 37 113 79 0 38 117 87 0 36 123 88 0 31 119 104 0 33 137	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233 1 27 261 237 3 30 270 261 3 48 312 296 3 47 36 272 3 52 333 280 1 52 333 274 1 45 320 236 2 47 285 263 2 51 333 274 1 45 320 266 2 47 285	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197 0 1 198 195 1 1 197 180 2 1 183 198 2 1 201 205 2 0 207 208 1 0 209 219 0 0 219 223 1 0 233 232 1 0 233	478 3 13 495 498 4 16 516 502 3 13 518 537 2 15 554 583 0 11 594 612 3 12 627 632 3 12 627 626 3 14 683	70 0 0 70 76 0 0 76 81 0 0 81 91 0 0 91 95 0 0 95 88 0 0 85 88 0 0 86 79 0 0 79 70 0 0 79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153 0 43 196 159 0 41 200 160 0 40 200 173 0 44 217 174 0 45 219 176 0 46 222 186 0 42 233 186 0 42 233 186 0 42 233 186 0 35 310	2733 20 192 2946 2893 25 205 3123 2971 21 217 3209 3119 18 228 3366 2256 15 226 3407 2233 6 228 3467 3234 7 217 3473 3104 8 211 3323 3104 8 298 3467

Intersection of M2 On/Off Ramps & Herring Road Thursday, 1 August 2013 Austraffic 7:00 AM 15:30 PM Survey Start Intersection Type Intersection No. AM T Junction 1 $\langle N \rangle$ North Approach M2 On/Off Ramps M2 On/Off Ramps East Approach M2 On/Off Ramps South Approach West Approach Herring Road M2 On/Off Ramps Date 1/08/13 Light Heavy Bus Classification Herring Road Camera Position

D TOTA

TIME PERIOD	1	1		2	2			3	3		GF	RAND) TOT	AL .
	Light Heavy	Bus Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light I	Heavy	Bus	Σ
7:00 - 7:15	9 0	0 9	25	3	2	30	14	1	0	15	48	4	2	54
7:15 - 7:30	8 0	0 8	19	1	4	24	28	1	1	30	55	2	5	<mark>62</mark>
7:30 - 7:45	18 0	0 18	18	0	2	20	49	0	1	50	85	0	3	<mark>88</mark>
7:45 - 8:00	29 0	0 29	25	1	2	<mark>28</mark>	46	3	2	<mark>51</mark>	100	4	4	108
8:00 8:15	21 0	0 21	24	0	5	<mark>29</mark>	55	5	0		100	5	5	110
8:15 8:30	33 0	0 33	20	2	6	<mark>28</mark>	67	2	1	70	120	4	7	131
8:30 8:45	28 0	0 28	17	3	5	25	68	3	0	71	113	6	5	124
8:45 9:00	15 0	0 15	16	2	6	24	80	3	0	<mark>83</mark>	111	5	6	122
9:00 - 9:15	14 1	0 15	22	2	9	33	38	3	0	41	74	6	9	<mark>89</mark>
9:15 - 9:30	13 1	0 14	21	3	3	27	40	5	0	<mark>45</mark>	74	9	3	<mark>86</mark>
9:30 - 9:45	8 1	0 9	17	1	6	<mark>24</mark>	28	4	0	<mark>32</mark>	53	6	6	<mark>65</mark>
9:45 - 10:00	11 0	0 11	20	1	4	<mark>25</mark>	27	1	0	<mark>28</mark>	58	2	4	<mark>64</mark>
Σ	207 3	0 210	244	19	54	317	540	31	5	576	991	53	59	1103
						ICLE N	IOVEME							
TIME PERIOD	1	1		2		_		3	1		GF	RAND	TOT/	AL
	Light Heavy	Bus ∑	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light I	Heavy	Bus	Σ
15:30 - 15:45 15:45 - 16:00		0 4 0 3	92 94	3 6	1 4	96 104	21 17	0 1	1	22 18	116 112	4 9	2 4	122 125

TIME PERIOD

1

VEHICLE MOVEMENT

15:30	-	15:45	3	1	0	4	92	3	1	<mark>96</mark>	21	0	1	22	116	4	2	122
15:45	-	16:00	1	2	0	3	94	6	4	104	17	1	0	<mark>18</mark>	112	9	4	125
16:00	-	16:15	0	0	0	0	141	4	3	148	16	0	0	<mark>16</mark>	157	4	3	164
16:15	-	16:30	3	0	0	3	155	1	2	158	14	1	0	<mark>15</mark>	172	2	2	176
16:30	-	16:45	2	0	0	2	175	4	1	180	25	0	0	<mark>25</mark>	202	4	1	207
16:45	-	17:00	2	0	0	2	192	2	4	198	18	0	0	<mark>18</mark>	212	2	4	218
17:00	-	17:15	0	1	0	1	218	4	5	227	27	0	0	27	245	5	5	255
17:15	-	17:30	2	0	0	2	176	2	5	183	35	1	0	36	213	3	5	221
17:30	-	17:45	1	0	0	1	172	5	3	180	28	0	0	<mark>28</mark>	201	5	3	209
17:45	-	18:00	3	0	0	3	163	3	5	171	33	1	0	34	199	4	5	208
18:00	-	18:15	1	1	0	2	146	3	3	152	15	1	0	<mark>16</mark>	162	5	3	170
18:15	-	18:30	0	0	0	0	130	1	4	135	21	0	0	21	151	1	4	156
	Σ		18	5	0	23	1854	38	40	1932	270	5	1	276	2142	48	41	2231

HOURL	Y FLO	W																	
									VE	HICLE N	<i>I</i> OVEME	NT							
TIN	IE PER	RIOD		1	1				2				3		G	RANI	D TOT /	۸L	
			Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	y Bus	Σ	
7:00	-	8:00	64	0	0	64	87	5	10	102	137	5	4	146	288	10	14	312	1
7:15	-	8:15	76	0	0	76	86	2	13	101	178	9	4	191	340	11	17	368	
7:30	-	8:30	101	0	0	101	87	3	15	105	217	10	4	231	405	13	19	437	
7:45	-	8:45	111	0	0	111	86	6	18	110	236	13	3	252	433	19	21	473	
8:00	-	9:00	97	0	0	97	77	7	22	106	270	13	1	284	444	20	23	487	Pea
8:15	-	9:15	90	1	0	91	75	9	26	110	253	11	1	265	418	21	27	466	
8:30		9:30	70	2	0	72	76	10	23	109	226	14	0	240	372	26	23	421	
8:45	-	9:45	50	3	0	53	76	8	24	108	186	15	0	201	312	26	24	362	
9:00	-	10:00	46	3	0	49	80	7	22	109	133	13	0	146	259	23	22	304	

							VE	HICLE N	IOVEM	ENT							
TIME PERIOD		1	l			2	2			:	3		6	GRAN	D TOT/	AL	
	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light	Heav	y Bus	Σ	
15:30 - 16:30	7	3	0	10	482	14	10	506	68	2	1	71	557	19	11	587	
15:45 - 16:45	6	2	0	8	565	15	10	590	72	2	0	74	643	19	10	672	
16:00 - 17:00	7	0	0	7	663	11	10	684	73	1	0	74	743	12	10	765	
16:15 - 17:15	7	1	0	8	740	11	12	763	84	1	0	85	831	13	12	856	
16:30 - 17:30	6	1	0	7	761	12	15	788	105	1	0	106	872	14	15	901	
16:45 - 17:45	5	1	0	6	758	13	17	788	108	1	0	109	871	15	17	903	I Pe
17:00 - 18:00	6	1	0	7	729	14	18	761	123	2	0	125	858	17	18	893	
17:15 - 18:15	7	1	0	8	657	13	16	686	111	3	0	114	775	17	16	808	
17:30 - 18:30	5	1	0	6	611	12	15	638	97	2	0	99	713	15	15	743	

Intersectio	n of Talave	ra Road and H	lerring Road	Thursday, 1 August 2013
				Austraffic
Survey Start Intersection Type Intersection No. North Approach East Approach South Approach West Approach Date Classification	7:00 AM Cross Junction 2 M2 On&Off Ramps Talavera Road Herring Road Talavera Road 1/08/13 Light Heavy Bus	15:30 PM		M2 On&Off Ramps

					Came	ra Position							
			VEHICLE	MOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ
7:45 - 8:00 8:10 8:15 8:30 8:15 8:30 8:45 8:45 9:00 - 9:15 9:15 - 9:30 9:45 9:30 - 9:45 9:30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 1 0 9 12 1 0 13 32 0 0 33 25 3 1 29 26 4 0 32 50 2 0 52 43 3 0 46 44 2 0 33 22 5 0 33 22 5 0 27 14 2 0 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 1 0 41 43 3 1 47 55 3 0 61 55 2 0 57 49 3 0 52 72 2 0 74 55 5 0 63 55 5 0 70 69 3 1 73 60 1 0 61 71 1 0 72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 4 0 46 45 1 0 46 57 2 0 50 70 1 0 71 59 0 1 60 777 4 0 81 77 3 0 70 67 3 0 70 56 0 0 56 43 3 0 70 41 1 0 46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298 15. 11. 324. 364. 12. 12. 368. 455. 10. 10. 478. 515. 11. 10. 536. 499. 12. 13. 523. 499. 12. 13. 523. 499. 12. 14. 542. 499. 12. 14. 542. 499. 17. 17. 525. 421. 14. 18. 453. 369. 17. 7. 392. 350. 13. 15. 378.
9:45 10:00 Σ	10 0 0 10 186 4 3 193	0 0 0 0	17 1 0 18 325 27 1 353	12 0 0 12 118 7 1 126	88 1 0 89 728 30 2 760	25 2 0 27 281 13 0 294	40 0 0 40 668 19 1 688	13 0 4 17 190 12 53 255	11 0 0 11 172 8 18 198	0 0 5 5	123 6 0 129 2397 36 3 2436	6 1 0 7 133 3 0 136	345 11 9 365 5198 159 144 5501

			VEHICLE N	IOVEMENT						VEHICLE MOVEMENT			
TIME PERIOR	1	2	3	4	5	6	7	8	9	10 1	1	12	GRAND TOTAL
	Light Heavy Bus Σ Light Heavy	Bus ∑ Lig	ght Heavy Bus Σ	Light Heavy Bus Σ									
15:30 - 1	i:45 11 0 1 12	0 0 0 0	10 0 0 10	39 3 0 42	79 0 0 79	28 0 0 28	34 1 0 35	38 0 1 39	19 0 1 20	0 0 4 4 102 4	0 106 1	8 1 0 19	378 9 7 394
15:45 - 1	0 10 0 10 10	0 0 0 0	6 0 0 6	45 4 0 49	79 2 0 <mark>81</mark>	32 2 0 34	40 0 0 40	45 3 4 52	14 0 3 17	0 0 4 4 97 0	0 97 1	6 2 0 18	384 13 11 408
16:00 - 1	15 5 1 0 6	0 0 0 0	12 0 0 12	56 3 0 59	89 0 0 89	41 1 0 42	61 1 0 62	60 1 3 64	14 0 2 16	1 0 3 4 94 3	1 98 2	2 0 0 22	455 10 9 474
	i:30 8 0 0 8	0 0 0 0	6 1 0 7	62 1 0 63	103 2 0 105	29 1 0 30	55 0 0 55	73 0 2 75	23 0 0 23	0 0 7 7 91 3	0 94 2	13 0 0 <mark>23</mark>	473 8 9 490
16:30 - 1	45 12 0 0 12	0 0 0 0	14 0 0 14	78 2 0 80	112 0 0 112	44 0 1 45	48 1 0 49	77 1 1 79	16 1 3 20	1 0 5 6 106 1	2 109 2	1 0 24	531 7 12 550
16:45 - 1	00 10 0 0 10	0 0 0 0	8 0 0 8	89 2 0 91	104 0 0 104	38 0 0 38	65 0 0 <mark>65</mark>	78 0 4 82	21 0 3 24	0 0 7 7 110 3	1 114 2	13 0 0 <mark>23</mark>	546 5 15 566
17:00 - 1	15 15 0 0 15	0 0 0 0	10 0 0 10	93 4 0 97	132 1 0 133	58 1 0 59	54 1 1 56	92 1 5 98	21 0 1 22	1 0 9 10 100 2	0 102 3	K3 0 0 <u>33</u>	609 10 16 635
17:15 - 1	30 15 1 0 16	0 0 0 0	21 0 0 21	85 2 0 87	150 2 0 152	42 0 0 42	68 0 0 68	75 0 5 80	33 0 2 35	0 0 3 3 115 1	0 116 2	0 0 0 20	624 6 10 640
17:30 - 1	145 16 0 0 16°	0 0 0 0	13 0 0 13	82 4 0 86	117 0 0 117	34 0 0 34	74 1 1 76	71 0 3 74	36 0 1 37	5 0 4 9 104 0	0 104 2	21 1 0 <mark>22</mark>	573 6 9 588
17:45 - 1	1:00 19 1 0 20	0 0 0 0	13 0 0 13	78 1 0 79	118 0 0 118	35 0 1 36	65 1 0 66	72 2 5 79	28 0 0 28	0 0 5 5 107 0	0 107 1	8 0 0 18	553 5 11 569
18:00 - 1	1:15 10 1 0 11	0 0 0 0	5 0 0 5	70 1 0 71	104 0 0 104	28 0 0 28	75 0 0 75	60 1 3 64	26 1 2 29	1 0 7 8 111 0	0 111 1	7 1 0 18	507 5 12 524
18:15 - 1	:30 11 0 0 11	0 0 0 0	9 0 0 9	59 0 0 59	110 0 1 111	29 1 0 30	69 0 0 69	55 0 4 59	36 0 3 39	1 0 5 6 100 2	1 103 1	8 1 0 19	497 4 14 515
Σ	142 4 1 147	0 0 0 0	127 1 0 128	836 27 0 863	1297 7 1 1305	438 6 2 446	708 6 2 716	796 9 40 845	287 2 21 310	10 0 63 73 1237 19	5 1261 25	52 7 0 259	6130 88 135 6353

HOURLY FLOW													
			VEHICLE	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ
7:45 - 8:45 8:00 - 9:00 8:15 - 9:15 8:30 - 9:30	71 1 2 74 85 2 1 88 77 1 1 79 80 1 0 81 71 3 0 74	0 0 0 0	77 5 1 83 97 8 1 106 135 9 1 145 146 12 1 159 165 11 0 176 167 10 0 177 139 13 0 152 110 12 0 122 133 1 0 94	38 0 1 39 42 0 4 39 41 1 1 43 41 2 0 43 37 4 0 41 35 6 0 41 42 6 0 41 42 6 0 48 40 5 0 48 43 3 0 46	244 15 0 259 264 15 1 280	81 5 0 86 99 4 0 103 106 4 0 110 105 3 0 108 100 3 0 108 91 3 0 94 93 1 0 94 95 4 0 94 95 4 0 94 95 4 0 94	277 5 1 283 274 7 1 282 271 7 0 278 237 6 0 243	78 2 14 94 85 4 18 107 74 3 22 99 73 4 26 103 60 6 23 89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 20 20 0 0 19 19 0 0 21 21 0 0 21 21 0 0 23 23 0 0 22 22 0 0 22 22 0 0 19 19 0 0 19 19 0 0 19 19 0 0 18 18	812 13 1 826 913 13 0 926 987 10 0 997 1007 7 0 1014 983 8 0 997 1007 7 0 1014 983 8 0 991 922 8 1 931 811 10 1 822 706 12 2 720 602 15 2 619	48 2 0 50 49 1 0 50 66 0 0 66 58 0 0 56 51 0 0 51 37 0 0 37 30 0 0 37 27 1 0 28	1635 48 43 1726 1835 45 45 1925 2040 48 46 2134 2038 50 50 2188 2079 56 52 2187 2002 58 57 2117 1801 60 51 1912 1635 61 52 1748 1484 55 49 1588

			VEHICLE	NOVEMENT						VEHICLE MOVEMENT			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus Σ	Light Heavy Bus S	Light Heavy Bus ∑	Light Heavy Bus Σ
15:30 - 16:30 15:45 - 16:45 16:00 - 17:00 16:15 - 17:15 16:30 - 17:35 16:45 - 17:45 17:00 - 18:00 17:15 - 18:15 17:30 - 18:30	35 1 0 36 35 1 0 36 45 0 0 45 52 1 0 53 56 1 0 57	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202: 11 0 213 241: 10 0 251 285: 8 0 293 322: 9 0 331 345: 10 0 355 349: 12 0 361 338: 11 0 349 315: 8 0 329 289: 6 0 229	350: 4 0 354 383: 4 0 387 408: 2 0 410 451: 3 0 454 468: 3 0 505 503: 3 0 506 517: 3 0 520 449: 2 0 490 449: 0 1 450	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190 2 0 192 204 2 0 206 229 2 0 231 222 2 1 225 235 2 1 225 235 2 1 225 241 2 2 265 261 3 2 266 262 2 1 285 283 2 1 286	216 4 10 230 255 5 10 270 288 2 10 300 320 2 12 334 322 2 15 339 316 1 17 334 310 3 18 331 278 3 16 297 258 3 15 276	.70 .0 .6 .76 67 1 .8 .76 74 1 .8 .83 81 1 .7 .89 91 1 .9 .01 111 0 .7 .118 111 0 .7 .118 112 0 .4 .122 123 1 .5 .129 126 1 .6 .133	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	384 10 1 395 388 7 3 398 401 10 4 415 407 9 3 419 431 7 3 441 429 6 1 436 429 6 1 436 426 3 0 429 437 1 0 438 422 2 1 429	79 3 0 82 84 3 0 87 91 1 0 92 102 1 0 103 99 1 0 100 97 1 98 96 97 1 0 98 92 1 0 93 76 2 0 78 74 3 0 77	1690: 40.36.1766 1843:38.41.1922 2005:30.45.2080 2159:30.52.2241 2310:28.53.2291 2352:27.50.2429 2352:27.50.2429 2352:27.46.2423 2359:27.46.2423 2359:27.46.2423 2359:27.46.2423 2359:27.46.2423 2459:27.46.2423 2459:27.46.2423 2459:27.46.2423 2459:27.46.2423 2459:47.46.2423259:47.46.245

													NOVEN																															VEMER																
TIME F	ERIOD			1			2				3				4				5				5			7				8			9			1	0			11			12				13			14			15			16		G	GRANE	TOTAL
		Light	t Heavy	Bus	ΣL	.ight Hea	avy Bu	sΣ	Light	t Heav	y Bus	Σ	Light	Heavy	y Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	Σ	Light H	eavy E	kus 🖸	E Lig	ht Heav	y Bus	Σ	Light H	eavy B	lus Σ	Light	t Heavy	Bus	Σ	Light He	avy Bu	- Σ	Light I	Heavy	Bus 1	E Ligi	nt Heavy	Bus	Σ	Light He	avy Bu	sΣ	Light H	eavy Bu	sΣ	Light H	leavy E	us Σ	Light	t Heavy	Bus Σ
7:00	7:15	26	1	1	28	21 0	0 0	21	25	0	1	26	69	3	3	75	158	6	4	168	6	1	0	7	66	0	0 6	6 64	4 0	1	65	5	0	0 5	5	0	0	5	575 1	4 1	590	72	1	0 7	3 0	0	0	0	0	0 0	0	0	0 0	0	0	0	0 0	1092	2 26	11 11
7:15	7:30	31	1	0	32	12 0	0 1	13	37	3	1	41	60	2	1	63	193	5	6	204	9	0	0	9	71	1	0 7	2 88	B 1	1	90	3	0	0 3	6	0	0	6	520	7 5	532	110	1	1 1	12 0	0	0	0	1 1	0 0	1	0	0 0	0	0	0	0 0	1141	1 21	16 11
7:30	7:45	25	2	1	28	36 1	2	39	50	0	1	51	99	1	2	102	208	7	6	221	19	1	1	21	94	0	0 9	4 10	8 0	1	109	5	0	0 5	4	0	0	4	495	7 4	506	111	2	3 1	16 0	0	0	0	0 1	0 0	0	0	0 0	0	0	0	0 0	1254	4 21	21 12
7:45	8:00	24	0	1	25	22 0	0 1	23	57	0	1	58	159	2	2	163	218	4	7	229	14	0	0	14	93	0	0 9	3 95	5 0	0	95	3	0	1 4	2	0	0	2	468	5 3	476	138	2	1 1	1 0	0	0	0	2	0 0	2	0	0 0	0	0	0	0 0	1295	5 13	17 13
8:00	8:15	34	4	2	40	27 1	6	34	58	2	2	62	148	2	1	151	210	7	3	220	22	1	0	23	89	1	0 9	0 13	0 0	1	131	3	0	0 3	5	0	0	5	439	9 4	452	123	4	0 1	27 0	0	0	0	3 1	0 0	3	0	0 0	0	0	0	0 0	1291	1 31	19 13
8:15	8:30	29	2	2	33	36 0	0 0	36	50	1	0	51	136	1	2	139	242	4	1	247	32	0	0	32	100	1	0 1	01 11	3 0	1	114	5	1	1 7	4	0	0	4	448	3 3	454	150	2	2 1	54 0	0	0	0	2 1	0 0	2	0	0 0	0	0	0	0 0	1347	7 15	12 13
8:30	8:45	32	0	2	34	29 1	2	32	64	1	3	68	176	3	2	181	230	11	2	243	35	2	0	37	82	0	0 8	2 13	0 0	0	130	4	0	0 4	8	0	0	8	416	2 1	419	152	1	1 1	54 0	0	0	0	2 1	0 0	2	0	0 0	0	0	0	0 0	1360	21	13 13
8:45	9:00	22	1	2	25	50 1	1 2	53	82	0	0	82	189	2	1	192	214	6	1	221	26	1	0	27	89	1	0 9	0 12	9 0	0	129	3	1	0 4	8	0	0	8	363	4 3	370	166	1	0 1	57 0	0	0	0	1 1	0 0	1	0	0 0	0	0	0	0 0	1342	2 18	9 13
9:00	9:15	26	1	0	27	41 C	2	43	79	2	5	86	166	0	1	167	193	4	5	202	33	0	0	33	82	1	0 8	3 11	4 2	1	117	7	0	0 7	11	0	0	11	373	9 3	385	133	1	1 1	35 1	0	0	1	2 1	0 0	2	0	0 0	0	0	0	0 0	1261	1 20	18 12
9:15	9:30	29	0	2	31	21 0	3 3	24	58	2	1	61	137	4	1	142	173	9	2	184	16	0	0	16	75	2	0 7	7 13	4 0	2	136	6	0	0 6	13	0	0	13	395 1	0 3	408	140	2	1 1	43 0	0	0	0	3 1	0 0	3	0	0 0	0	0	0	0 0	1200	0 29	15 12
9:30	9:45	26	3	1	30	28 0	3 3	31	44	1	1	46	126	4	0	130	253	5	1	259	29	1	0	30	61	1	0 0	2 85	5 1	0	86	11	0	0 11	8	0	1	9	409 1	1 4	424	117	3	1 1	21 0	0	0	0	1 1	0 0	1	0	0 0	0	0	0	0 0	1198	8 30	12 12
9:45	10:00	40	0	1	41	29 0	0 1	30	42	2	0	44	90	1	1	92	226	14	3	243	17	1	0	18	39	1	0 4	0 79	9 0	4	83	8	0	0 8	8	0	0	8	315	6 2	323	127	0	1 1	28 0	0	0	0	2 1	0 0	2	0	0 0	0	0	0	0 0	1022	2 25	13 10
	2	344	15	15 3	374 3	352 4	23	379	646	14	16	676	1555	25	17	1597	2518	82	41	2641	258	8	1	267	941	9	0 9	50 126	59 4	12	1285	63	2	2 67	82	0	1	83	5216 8	37 36	5339	1539	20	12 15	71 1	0	0	1	19	0 0	19	0	0 0	0	0	0	0 0	2000	270	176 ##

											VEHIC	JLE MU	VEME	41																														VEHICL	.E MOV	EMENT																		
TIME	PERIOD		1			2				3				4				5				6				7				8				9				10			11				12				13			1	4			15				16		GF	RAND	TOTAL
		Light H	leavy B	us Σ	Light	Heavy	Bus	Σ	Light H	leavy I	Bus	Σ	Light H	eavy I	Bus	Σ	ight H	eavy	Bus	ΣΙ	Light H	eavy	Bus	ΣL	.ight H	eavy E	Bus	ΣL	ght He	avy B	us ž	Lig	ht Hea	ivy Bu	is Σ	Light	t Heav	Bus	Σ	Light I	Heavy E	Bus 🔅	ΣLi	ght He	avy B	15 Σ	Ligi	t Heav	y Bus	Σ	Light	Heavy	Bus	Σ	Light	Heavy	Bus	ΣLi	ght Hea	vy Bus	Σ	Light	Heavy	Bus
15:30	· 15:45	100	1 (0 101	72	0	4	76	75	1	0	76	80	1	0	81	126	13	1 4	440	54	1	0	55	18	1	0	19 1	32 1	0 .	4 8	5 14	1	0	15	12	1	0	13	241	4	2 2	47 8	16 0	0 0) 8	5 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1260	24	11 12
15:45	- 16:00	108	1 1	1 110	84	0	2	86	57	1	2	60	73	0	1	74	108	4	2 4	414	56	1	0	57	27	1	0	28	71 0	0 3	3 7	18	8 0	0	18	13	0	2	15	230	0	5 2	35 5	65 0	D 1	56	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1200	8	19 1
16:00	- 16:15	147	0 2	2 149	133	2	3	138	69	0	2	71	72	2	1	75	122	7	1 4	430	58	1	1	60	24	0	0	24 1	54	0	1 5	5 9	0	0	9	13	0	0	13	231	3	3 2	37 8	15 0	0 0) 85	5 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1317	15	14 1
16:15	- 16:30	123	1 2	2 126	119	0	3	122	65	1	1	67	83	0	1	84	148	4	0 4	452	69	1	0	70	28	0	0	28 1	58 0	0 1	1 5	8 8	1	1	10	22	0	0	22	246	2	1 2	49 8	14 0	D 1	85	5 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1353	10	11 1
16:30	- 16:45	131	0 3	3 134	125	2	2	129	61	1	1	63	71	1	2	74	391	12	1 4	404	65	0	0	65	25	0	1	26 (54	1	4 6	6	1	0	7	23	1	0	24	217	0	6 2	23 6	2 0	0 0	62	0	0	0	0	1	0	0	1	0	0	0	0	0 0	0	0	1242	19	20 1
16:45	- 17:00	123	0 1	1 124	142	2	3	147	62	0	2	64	73	0	1	74	374	10	0	384	85	0	0	85	24	1	0	25 1	39 0	0 :	2 10	1 9	0	0	9	30	0	0	30	211	3	1 2	15 8	19	1 1	91	0	0	0	0	1	0	0	1	0	0	0	0	0 0	0	0	1322	17	11 1
17:00	- 17:15	143	0 2	2 145	142	0	2	144	59	1	1	61	112	1	0	113	16	3	2	421	81	0	0	81	29	0	0	29 1	95	0	2 9	6	0	0	6	29	0	0	29	231	2	2 2	35 9	6 0	0 0	9	0	0	0	0	1	0	0	1	0	0	0	0	0 0	0	0	1440	7	11 1
17:15	- 17:30	129	1 1	1 131	164	1	2	167	95	0	2	97	89	0	1	90	359	4	0	363	86	1	0	87	20	1	1	22 1	39	0 :	2 9	1 6	1	0	7	46	0	0	46	248	2	1 2	51 8	19 0	D 1	90	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1420	11	11 1
17:30	- 17:45	144	1 3	3 148	147	0	4	151	55	0	1	56	81	0	1	82	385	2	0	387	76	2	0	78	23	0	0	23 1	10	1 3	2 11	3 10	0 0	0	10	28	0	0	28	183	1	3 1	87 8	12 0	0 1	83	0	0	0	0	2	0	0	2	0	0	0	0	0 0	0	0	1326	7	15 1
17:45	- 18:00	113	0 2	2 115	127	0	0	127	54	0	1	55	68	1	1	70	348	5	3 3	356	75	1	0	76	37	2	0	39 1	11 :	2 :	3 11	6 17	1	0	18	28	0	0	28	154	1	1 1	56 7	6 0	0 0	76	5 0	0	0	0	1	0	0	1	0	0	0	0	0 0	0	0	1209	13	11 1
18:00	- 18:15	105	0	1 106	105	0	3	108	55	0	0	55	79	0	1	80	345	0	1	346	79	0	0	79	39	0	1	40	33	D	1 9	19	0	2	21	26	0	0	26	221	1	4 2	26 9	6 0	0 0) 96	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	1262	1	14 1
18:15	- 18:30	91	0 1	1 92	121	0	1	122	70	0	1	71	102	0	1	103	376	2	1 3	379	75	0	0	75	23	0	0	23 1	32	1 :	3 8	5 18	8 0	0	18	32	0	0	32	246	1	2 2	49 10	05 0	0 2	2 10	7 0	0	0	0	1	0	0	1	0	0	0	0	0 0	0	0	1342	4	12 1
	Σ	1457	5 1	9 148	1 1481	7	29 1	1517 7	777	5	14 3	796	983	6	11 1	4000	698	66	12 4	776	859	8	1 1	68 :	317	6	3 3	26 11	108	5 2	28 10	41 14	0 5	3	148	302	2	2	306	2659	20	31 21	710 10	105	1 1	101	13 0	0	0	0	7	0	0	7	0	0	0	0	0 0	0	0	2000	136	160 #

								VEHICLE	MOVEM	IENT																									VEHIC	LE MOVI	EMENT																/
TIME PERIOD		1			2		3			4			5				6			7				8			9			10			11			12			13			14			15			16	6		GRA	ND TO	DTAL
	Light Hea	avy Bus	ΣЦ	ght Heavy	Bus <u>y</u>	Light	Heavy E	us Σ	Light	Heavy	Bus X	Light	Heavy	Bus	Σ Ligh	ht Heav	vy Bu	Σ	Light	Heavy	Bus :	Σ Ligh	ht Heavy	y Bus	Σ	ight Hea	avy Bus	Σ	Light H	leavy B	us Σ	Light H	leavy Bu	ε Σ	Light He	avy Bu	sΣ	Light H	Heavy B	us Σ	Light	leavy Bu	sΣ	Light H	leavy B	Bus Σ	Light	Heavy	Bus	Σ	ight He	avy Bus	us Σ
00 - 8:00	106 4	4 3	113 1	1 1	4 9	5 169	3	4 176	387	8	8 40	3 777	22	23 8	822 48	2	1 1	51	324	1	0 3	25 355	5 1	3	359	16 0	2 1	17	17	0 0	2 17	2058	33 1	3 2104	431	6 5	442	0	0 0	0 0	3	0 0	3	0	0	0 0	0	0	0		782 8	31 65	55 4928
5 - 8:15	114 7	7 4	125	7 2	10 10	9 202	5	5 213	466	7	6 47	9 829	23	22 1	874 64	2	1	67	347	2	0 3	49 421	1 1	3	425	14 0	1	15	17	0 0	17	1922	28 1	5 1955	482	9 5	496	0	0 0	0 0	6	0 0	6	0	0	0 0	0	0	0	0 4	981 8	36 73	73 5140
0 - 8:30	112 8	8 6	126 1	21 2	9 13	2 215	3	4 22	542	6	7 55	5 878	22	17 9	917 87	2	1	90	376	2	0 3	78 446	6 0	3	449	16 1	1 2	19	15	0 0	15	1850	24 1	4 1888	522	10 6	538	0	0 0	0 0	7	0 0	7	0	0	0 0	0	0	0	0 5	187 8	30 69	59 5336
5 - 8:45	119 6	6 7	132 1	14 2	9 12	5 229	4	6 235	619	8	7 63	4 900	26	13 9	939 103	3 3	: 0	106	364	2	0 3	66 468	8 0	2	470	15 1	1 2	18	19	0 0	19	1771	19 1	1 1801	563	9 4	576	0	0 1	0 0	9	0 0	9	0	0	0 0	0	0	0	0 5	293 8	30 61	51 5434
0 · 9·00	117 7	7 8	132 1	42 3	10 15	5 254	4	5 25	649	8	6 66	3 896	28	7 9	931 115	5 4	0	119	360	3	0 3	53 502	12 0	2	504	15 2	2 1	18	25	0 0	25	1666	18 1	1 1695	591	8 3	602	0	0 0	0 0	8	0 0	8	0	0	0 0	0	0	0	0 5	340 8	15 57	53 5478
- 9:15	109 4	4 6	119 1	56 2	6 16	4 275	4	8 287	667	6	6 67	9 879	25	9 9	913 126	5 3	0	129	353	3	0 3	56 486	6 2	2	490	19 2	2 1	22	31	0 0	31	1600	18 1	0 1628	601	5 4	610	1	0 0	0 1	7	0 0	7	0	0	0 0	0	0	0	0 5	310 7	4 52	
0 • 9:30	109 2	2 6	117 1	41 2	9 15	2 283	5	9 297	668	9	5 68	2 810	30	10 8	850 110	3	0	113	328	4	0 3	32 507	7 2	3	512	20 1	1 0	21	40	0 0	2 40	1547	25 1	0 1582	591	5 3	599	1 1	0 1	0 1	8	0 0	8	0	0	0 0	0	0	0			38 55	55 5306
5 - 9:45	103 5	5 5	113 1	40 1	10 15	1 263	5	7 275	618	10	3 63	1 833	24	9 8	866 104	4 2	0	106	307	5	0 3	12 462	2 3	3	468	27 1	1 0	28	40	0 1	41	1540	34 1	3 1587	556	7 3	566	1	0 1	0 1	7	0 0	7	0	0	0 0	0	0	0	0 5	001 9	38 55 97 54	54 5152
10:00	121 4	4 4	120 1	19 0	0 12	0 222	7	7 222	510	0	2 52	1 845	22	44 4	20 000	2	0	07	257	5	0 2	62 412	2 2	7	422	22 0	0	22	40	0 1	1 41	1492	36 1	2 15.40	517	6 4	527	1	0 0	0 1	0	0 0	0	0	0	0 0	0	0	0	0 4	681 10		58 4843
																											5 1 0	,																									
								VEHICLE	MOVEM	IENT																52 U		1 04							VEHIC		EMENT					- / -											
IME PERIOD		1			2		3	VEHICLE	MOVEM	IENT 4			5				6			7				8			9			10			11		VEHIC	LE MOVI 12	EMENT		13		T	14			15			16	6		GRA		
ME PERIOD	Light Hea	1 saw Bus	ΣЦ	aht Heav	2 Bus S	Light	3 Heavy E			IENT 4	Bus y	Light	5 Heavy	Bus	Σ Liat	ht Heav	6 vv Bu	5 X	Light	7 Heavy	Bus	Σ Liat	aht Heavy	8 v Bus	Σ.	ight Hea	9 avvi Bus	×	Light	10 leavy B	us Σ	Light -	11 Jeavy Bu	ε Σ	VEHIC	LE MOVI 12 Navy Bu		Light H	13 Heavy B	us Σ	Light	14 leavy Bu	ε Σ	Light H	15 leavy B	Bus X	Light	1eavy	6 Bus	ΣЦ		ND TO	OTAL
	Light Hea	1 avy Bus		ght Heavy	2 Bus Σ 12 42	Light 2 255	3 Heavy E	VEHICLE	Light	4	Bus Σ	Light	5 Heavy	Bus 4	Σ Ligh 736 237	ht Heav	6 vy But	s Σ 242	Light	7 Heavy 2	Bus	Σ Ligh 39 265			Σ	ight Hez	9 avy Bus	5Ω 52	Light H	10 feavy Br	us Σ 53	Light H	11 feavy Bu	<u>zs Σ</u> 1 968	VEHIC	LE MOVI 12 navy Bu	EMENT	Light F	13 Heavy B	us Σ 0 0	Light	14 Icavy Bu	ε Σ	Light H	15 Ieavy B	Bus Σ	Light	18 Heavy	6 Bus	Σ L	ight He	ND TO	OTAL
0 - 16:30		1 savy Bus 3 5 2 8		ght Heavy	2 Bus Σ 12 42 10 47	Light 2 266 5 252	3 Heavy E 3	us Σ	Light	4	Bus Σ 3 31 5 30	Light 4 1704	5 Heavy 28 27	Bus 4 1 4 1	Σ Ligh 736 237 700 248	nt Heav	6 vy But 1	s Σ 242 252	Light 97	7 Heavy 2	Bus 0 5				Σ	ight Hez 49 2 41 2	9 avy: Bus 2 1 2 1	52 44	Light H	10 Heavy Bi		Light + 948 924	11 Heavy Bu 9 1 5 1	zs Σ 1 968 5 944	Light He	LE MOVI 12 navy Bu 0 2 0 2	EMENT 5 Σ 312 288	Light H	13 Heavy B	us <u>Σ</u> 0 0	Light 0	14 feavy Bu 0 0	s Σ 0	Light H	15 leavy B 0	3us Σ 0 0	Light	1e Heavy 0	6 Bus 0		ight He 130 5	ND TO	OTAL 1us Σ 55 5242
0 - 16:30 5 - 16:45		1 avy Bus 3 5 2 8 1 8		ght Heavy	2 Bus Σ 12 42 10 47 11 53	Light 2 266 5 252 6 257	3 Heavy E 3 3	us Σ	Light	4	Bus Σ 3 31 5 30	Light 4 1704 7 1669	5 Heavy 28 27 33	Bus 4 1 4 1 2 1	Σ Ligt 1736 237 1700 248	8 3	6 vy Bu 1 1	s <u>x</u> 242 252 280	Light 97 104	7 Heavy 2 1	Bus 0 9		5 0 7 1		Σ	ight Hez 49 2 41 2 32 2	9 avy Bus 2 1 2 1 2 1	52 44 35	Light #	10 leavy Bi 1 2		Light # 948 924 905	11 leavy Bu 9 1 5 1	<u>zs</u> Σ 1 968 5 944	Light He	LE MOVI 12 savy: Bu 0 2 0 2 1 2	EMENT 312 288 323	Light F 0	13 Heavy B 0 1	us Σ 0 0 0 0	Light 0 1	14 fearly BL 0 0 0 0	ε Σ 0 1	Light H	15 leavy B 0	Bus Σ 0 0 0 0	Light	1eavy 0 0	6 Bus 0		ight He 130 5	ND TO	OTAL
		1 any Bus 3 5 2 8 1 8		ght Heavy	2 Bus Σ 12 42 10 47 11 53	Light 2 266 5 252 6 257 2 247	3 Heavy E 3 2	us Σ	Light	4	Bus Σ 3 31 5 30 5 30	Light 4 1704 7 1669 7 1635	5 Heavy 28 27 33 29	Bus 4 1 4 1 2 1 3 1	700 248	8 3	6 vy Bu 1 1 1	s Σ 242 252 280 301	Light 97 104 101	7 Heavy 2 1 1	Bus 0 9 1 1 1 1	99 265 06 247	5 0 7 1		Σ	ight Heat 49 2 41 2 32 2 29 2	9 avy Bus 2 1 2 1 2 1	 Σ 52 44 35 32 	Light H 60 71 88	10 1 2 1 2 1 0		Light 4 948 924 905	11 leavy Bu 9 1 5 1 8 1 7 1	<u>zs</u> Σ 1 968 5 944 1 924	Light He	LE MOVI 12 savy Bu 0 2 1 2 1 2	EMENT 5 Σ 312 288 323 334	Light H 0 0	13 Heavy B 0 0	us Σ 0 0 0 0	Light 0 1 2	14 teavy BL 0 0 0 0	ε Σ 0 1 2	Light H 0 0	15 leavy B 0	Bus Σ 0 0 0 0 0 0 0 0	Light 0 0	14 Heavy 0 0	6 Bus 0 0		ight He 130 5	ND TO	OTAL
0 - 16:30 5 - 16:45 0 - 17:00 5 - 17:15		1 any Bus 3 5 2 8 1 8 1 8 1 8 1 7		ght Heavy	2 Bus Σ 12 42 10 47 11 53 10 54 9 58	Light 2 266 5 252 6 257 2 247 7 277	3 Heavy E 3 2 3 2	us Σ	Light	4	Bus Σ 3 31 5 30 5 30 4 34 4 35	Light 4 1704 7 1669 7 1635 15 1629 1 1540	5 Heavy 28 27 33 29 29 29	Bus 4 1 4 1 2 1 3 1 3 1	700 248	8 3	6 NY But 1 1 1 0 0	s Σ 242 252 280 301 318	Light 97 104 101 106 98	7 Heavy 2 1 1 1 2	Bus 1 0 5 1 1 1 1 1 1 1 1	99 265 06 247	5 0 7 1		Σ	ight Heat 49 2 41 2 32 2 29 2 27 2	9 avy Bus 2 1 2 1 2 1 2 1 2 1 2 1 2 0	52 52 44 35 32 29	Light 60 71 88 104 128	10 feavy Br 1 2 1 0 1 0 1 0		Light H 948 924 905 905 907	11 9 1 5 1 8 1 7 1 7 1	<u>15</u> Σ 1 968 5 944 1 924 0 922 0 924	Light He	LE MOVI 12 bavy Bu 0 2 0 2 1 2 1 2 1 2	EMENT 5 Σ 312 288 323 334 339	Light H 0 0 0	13 Heavy B 0 1 0 1 0 1 0 1	us Σ 0 0 0 0 0 0 0 0 0 0	Light 0 1 2 3 3	14 feavy Bu 0 0 0 0 0 0 0 0	5 Σ 0 1 2 3	Light H 0 0 0	15 leavy B 0 0	Bus Σ 0 0 0 0 0 0 0 0 0 0	Light 0 0 0	14 Heavy 0 0 0	6 0 0 0 0	0 5 0 5 0 5	ght He 130 5 112 5 234 6 357 5	ND TO avy: Bus 57 55 52 64 51 56 53 53	OTAL lus Σ 55 5242 54 5228 56 5351 53 5463
0 · 16:30 5 · 16:45 0 · 17:00 5 · 17:15 0 · 17:30		1 avy Bus 3 5 2 8 1 8 1 8 1 7 2 7	486 4 519 4 533 5 529 5	ght Heavy	2 Bus Σ 12 42 10 47 11 53 10 54 9 58 11 60	Light 2 266 5 252 6 257 2 247 7 277 9 271	3 Heavy E 3 2 3 2	us Σ	Light	4	Bus Σ 3 31 5 30 5 30 4 34 4 34 4 35 3 35	Light 4 1704 17 1669 17 1635 15 1629 11 1540	5 Heavy 28 27 33 29 29 29 29	Bus 4 1 4 1 2 1 3 1 3 1 2 1	700 248	8 3	6 Ny But 1 1 1 0 0	s Σ 242 252 280 301 318 331	Light 97 104 101 106 98	7 Heavy 2 1 1 1 2 2	Bus 1 0 5 1 1 1 1 1 1 2 1	99 265 06 247	5 0 7 1		Σ	ight Hea 49 2 41 2 32 2 29 2 27 2 31 1	9 avy Bus 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	52 52 44 35 32 29 32	Light H 60 71 88 104 128 133	10 1 2 1 2 1 0 1 0 1 0		Light H 948 924 905 905 907 873	11 9 1 5 1 8 1 7 1 7 1 8 2	zs Σ 1 968 5 944 1 924 0 922 0 924 888	Light He	LE MOVI 12 0 2 0 2 1 2 1 2 1 2 1 2	EMENT 5 Σ 312 288 323 334 339 350		13 Heavy B 0 1 0 1 0 1 0 1 0 1	us Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 1 2 3 3	14 1eavy BL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 Σ 0 1 2 3 3	Light H 0 0 0 0	15 leavy B 0 0 0	Bus Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 0 0 0	14 Heavy 0 0 0 0	6 Bus 0 0 0	0 5 0 5 0 5	Ight He 130 5 112 5 234 6 357 5 424 5	ND TO avy: Bus 57 55 52 64 51 56 53 53 54 53	OTAL lus Σ 55 5242 54 5228 56 5351 53 5463
0 - 16:30 5 - 16:45 0 - 17:00 5 - 17:15 0 - 17:30 5 - 17:30 5 - 17:45		1 avy Bus 3 5 2 8 1 8 1 8 1 7 2 8	486 4 519 4 533 5 529 5 534 5 548 5	ght Heavy	2 Bus Σ 12 42 10 47 11 53 10 54 9 58 11 60 8 58	Light 2 266 5 252 6 257 2 247 7 277 9 263	3 Heavy E 3 2 3 2 1	us Σ	Light	4	Bus Σ 3 31 5 30 5 30 4 34 4 35 3 35 3 35	Light 4 1704 7 1669 7 1635 15 1629 1 1540 9 1534 5 1508	5 Heavy 28 27 33 29 29 29 29 19	Bus 4 1 4 1 2 1 3 1 3 1 3 1 2 1 5 1	700 248	B 3 7 2 0 1 7 1 B 3	6 NY But 1 1 1 0 0 0 0	s Σ 242 252 280 301 318 331	Light 97 104 101 106 98 95	7 Heavy 2 1 1 1 2 2 2 3	Bus 0 5 1 1 1 1 1 1 2 1 1 5 1 1	99 265 06 247 03 275 08 316 02 347 99 393	5 0 17 1 15 1 16 1 17 1 13 1		Σ	ight Hea 49 2 41 2 32 2 29 2 27 2 31 1 39 3	9 avy Bus 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 2 0	52 52 44 35 32 29 32 41	Light F 60 71 88 104 128 133 131	10 teavy Bi 1 2 1 0 1 0 1 0 0 0		Light 1 948 924 905 907 907 873 815	11 9 1 5 1 8 1 7 1 8 1 7 1 8 7 8 7 5 7	<u>zs</u> Σ 1 968 5 944 1 924 0 922 0 924 888 829	Light He	LE MOVI 12 aavy Bu 0 2 1 2 1 2 1 2 1 2 1 3 0 2 1 3	EMENT 312 288 323 323 339 360 345	Light -	13 Heavy B 0 1 0 1 0 1 0 1 0 1	us Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 1 2 3 3 3 4 4	14 leavy BL 0 0 0 0 0 0 0 0 0 0 0 0	2 Σ 0 1 2 3 3 4 4	Light -	15 leavy B 0 0 0 0 0 0	Bus Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 0 0 0 0 0 0 0 0 0 0 0 0	14 Heavy 0 0 0 0 0 0	6 0 0 0 0 0	0 5 0 5 0 5 0 5 0 5	ight He 130 5 112 5 234 6 357 5 424 5 508 4	ND TO avy Bus 57 55 52 64 51 56 53 53 54 53 54 53 54 53	OTAL 55 5242 54 5228 55 5351 53 5463 53 5531 48 5598
80 - 16:30 15 - 16:45 30 - 17:00 15 - 17:15 80 - 17:30 45 - 17:45		1 avy Bus 3 5 2 8 1 8 1 8 1 8 1 7 2 7 2 7 2 7	486 4 519 4 533 5 529 5 534 5 548 5	ght Heavy 08 2 61 4 19 6 28 4 73 5 95 3	2 Bus Σ 12 42 10 47 11 53 10 54 9 58 11 60 8 58 9 58	2 247 7 277 9 271	3 Heavy E 3 3 2 3 2 1 1 0	us Σ 5 274 6 265 6 265 5 255 6 285 6 278	Light 308 299 299 339 345 355	4	Bus Σ 3 31 5 30 5 30 4 34 4 35 3 35 3 35 4 32	Light 4 1704 7 1669 77 1635 1529 1 1540 9 1534 5 1508 5 1508 2 1437	5 Heavy 28 29 29 29 19 11	Bus 4 1 4 1 2 1 3 1 3 1 2 1 3 1 3 1 2 1 4 1	700 248 670 277 661 300 572 317 555 328	B 3 7 2 0 1 7 1 B 3	6 Ny Buz 1 1 1 0 0 0 0	252 280 301 318 331	97 104 101 105 98 96	7 Heavy 2 1 1 1 2 2 3 3	Bus 0 5 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1	99 265 06 247 03 275 08 316 02 347 99 393	5 0 17 1 15 1 16 1 17 1 13 1		Σ 274 257 284 326 358 402	41 2 32 2 29 2 27 2 31 1	9 avy Bus 2 1 2 1 2 1 2 1 2 1 2 0 1 0 2 0 2 2 2 2	 Σ 52 44 35 32 29 32 41 56 	Light F 60 71 88 104 128 133 131 128	10 feavy Bi 1 2 1 2 1 0 1 0 1 0 0 0 0 0	2 63 2 74 0 89 0 105 0 129 0 133	924 905 905 907 873	11 10any Bt 9 1 5 1 8 1 7 1 7 1 8 7 6 7 5 5	zs Σ 1 968 5 944 1 924 0 922 0 924 888 829 829	Light Hi 310 286 320 331 336 356	LE MOVI 12 20 2 1 2 1 2 1 2 1 2 1 3 0 2 0 2	s Σ 312 288 323 334 339 360	Light 0 0 0 0 0 0	13 Heavy B 0 0 0 0 0 0 0 0 0 0	us Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 1 2 3 3 4 4 4 3	14 feavy BL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s Σ 0 1 2 3 3 4 4	Light 0 0 0 0	15 feavy B 0 0 0 0	3us Σ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light 0 0 0 0 0 0	18 Heavy 0 0 0 0 0 0	6 Bus 0 0 0 0 0 0	0 5 0 5 0 5 0 5 0 5 0 5 0 5	ight He 130 5 112 5 234 6 357 5 424 5 508 4 395 3	ND TO avy Bus 57 55 52 64 51 56 53 53 54 53 54 53 54 53	OTAL bus ∑ 55 5242 54 5228 56 5351 53 5463 53 5531 53 5531 8598 48 5481

Appendix B

Model Calibration Results

Macquarie Pa	ark Paramics N	Vodel		Run	208		GEH Statistics	
2014 AM Mo	del Calibratio	'n					No. of Count	48
							% GEH < 5	90%
Intersection	Herring Roa	d / Talavera Road /	M2 Ramps				No. > 10	1
Intersect	ion Details			Α	М		No. > 5	5
Approach	Movement		Data	Modelled	Difference	GEH		
M2 Ramps	L	9011_668_677	176	183	7	0.5		
	R	9011_668_667	88	74	-14	1.6		
Talavera E	L	678_680_793	103	116	13	1.2		
	Т	677_668_667	259	178	-81	5.5		
	R	677_668_672	41	68	27	3.7		
Herring	L	671_668_667	67	59	-8	1.0		
	Т	670_668_672	99	134	35	3.2		
	R	670_668_677	282	241	-41	2.5		
Talavera W	L	667_668_672	58	42	-16	2.3		
	Т	667_668_677	991	909	-82	2.7		
Totals			2164	2004	-160	3.5		
					No. > 5	1		
					No. > 10	0		

Intersection	Herring Roa	d / Waterloo Road				
Approach	Movement		Data	Modelled	Difference	GEH
Herring N	L	2067_708_2065	169	152	-17	1.3
	т	2067_708_1031	108	139	31	2.8
	R	2067_708_709	91	69	-22	2.5
Waterloo	L	2111_708_1031	123	63	-60	6.2
	т	2111_708_709	239	273	34	2.1
	R	2065_708_780	172	156	-16	1.2
Herring S	L	367_708_709	238	237	-1	0.1
	т	367_708_780	615	658	43	1.7
	R	1031_708_2065	695	602	-93	3.7
University	L	710_708_780	119	82	-37	3.7
	т	710_708_2065	220	172	-48	3.4
	R	709_708_1031	59	114	55	5.9
Totals			2848	2717	-131	2.5
					No. > 5	2
					No. > 10	0

Intersection	Epping Road	d / Herring Road				
Approach	Movement		Data	Modelled	Difference	GEH
Herring N	L	487_488_499	263	299	36	2.1
	т	1432_574_494	155	197	42	3.2
	R	1432_574_576	132	84	-48	4.6
Epping E	L	2101_494_390	119	96	-23	2.2
	т	2101_574_576	931	941	10	0.3
	R	499_574_1432	663	642	-21	0.8
Herring S	L	494_576_502	18	16	-2	0.5
	т	494_574_1432	504	470	-34	1.5
	R	494_574_499	363	303	-60	3.3
Epping W	L	1548_1432_492	602	537	-65	2.7
	т	1553_574_499	1695	1559	-136	3.4
	R	576_574_494	25	41	16	2.8
Totals			5470	5185	-285	3.9
					No. > 5	0
					No. > 10	0

Intersection Epping Road / Balaclava Road

Approach	Movement		Data	Modelled	Difference	GEH
Balaclava N	L	49_591_1550	2	6 33	7	1.3
	Т	591_580_579	5	9 140	81	8.1
	R	591_580_587	4	6 157	111	11.0
Epping E	L	1549_48_579	23	5 197	-38	2.6
	т	1549_580_587	65	8 620	-38	1.5
	R	1550_580_591	25	3 259	6	0.4
Balaclava S	L	15_587_588	2	8 13	-15	3.3
	Т	15_580_591	34	9 310	-39	2.1
	R	15_580_1550	63	0 566	-64	2.6
Epping W	L	592_591_49	27	6 252	-24	1.5
	Т	589_580_1550	157	3 1535	-38	1.0
	R	587_580_579	8	4 93	9	1.0
Totals			421	7 4175	-42	0.6
					No. > 5	2
					No. > 10	1

Intersection	Lane Cove R	Rd / Talavera Rd					
Approach	Movement		Data	Мо	delled	Difference	GEH
Lane Cove N	R	803_548_799		730	677	-53	2.0
Totals				730	677	-53	2.0
						No. > 5	0
						No. > 10	0

Intersection Lane Cove Rd / Waterloo Rd Approach Movement

Approach	Movement		Data	
Lane Cove N	R	734_716_717		5
Totals				5

	Modelled	Difference	GEH
569	562	-7	0.3
569	562	-7	0.3
		No. > 5	0
		No. > 10	0

2014 PM Model Calibration No. of Count % GEH < 5 Intersection Herring Road / Talavera Road / M2 Ramps No. > 10 PM **Intersection Details** No. > 5 Approach Movement Data Modelled Difference GEH 28 -25 3.9 M2 Ramps L 9011_668_677 53 79 R 9011_668_667 53 132 8.2 Talavera E L 678_680_793 184 217 33 2.3 Т 678_668_667 501 471 -30 1.4 R 355 474 119 5.8 677_668_672 Herring L 671_668_667 101 67 -34 3.7 Т 670_668_672 339 367 28 1.5 R 670_668_677 238 283 45 2.8 -5 Talavera W L 667_668_672 100 95 0.5 Т 667_668_677 441 354 -87 4.4 Totals 2365 2.5 2488 123 No. > 5 2 No. > 10 0

Macquarie Park Paramics Model

Run

216

GEH Statistics

48

0

4

92%

Intersection	Herring Roa	d / Waterloo Road				
Approach	Movement		Data	Modelled	Difference	GEH
Herring N	L	2067_708_2065	175	181	6	0.4
	Т	2067_708_1031	422	412	-10	0.5
	R	2067_708_709	123	108	-15	1.4
Waterloo	L	2111_708_1031	672	815	143	5.2
	т	2111_708_709	244	210	-34	2.3
	R	2065_708_780	327	280	-47	2.7
Herring S	L	367_708_709	95	108	13	1.3
	т	367_708_780	602	522	-80	3.4
	R	1031_708_2065	207	264	57	3.7
University	L	710_708_780	219	211	-8	0.5
	т	710_708_2065	227	236	9	0.6
	R	709_708_1031	194	191	-3	0.2
Totals			3507	3538	31	0.5
					No. > 5	1
					No. > 10	0

Intersection Approach	Epping Road Movement	d / Herring Road	Data	Modelled	Difference	GEH
Herring N	1	487 488 499	28	5 275	-10	0.6
	- -			-	-	
	I	1432_574_494	58	7 616	29	1.2
	R	1432_574_576	534	1 560	26	1.1
Epping E	L	2101_494_390	318	3 275	-43	2.5
	Т	2101_574_576	1572	2 1678	106	2.6
	R	499_574_1432	35:	L 287	-64	3.6

Herring S	L	494_576_502	29	40	11	1.9
	Т	494_574_1432	358	309	-49	2.7
	R	494_574_499	102	121	19	1.8
Epping W	L	1548_1432_492	339	393	54	2.8
	Т	1553_574_499	924	1020	96	3.1
	R	576_574_494	129	111	-18	1.6
Totals			5528	5685	157	2.1
					No. > 5	0
					No. > 10	0

Intersection		d / Balaclava Road	Data	Madallad	Difference	CEU
Approach	Movement		Data	Modelled	Difference	GEH
Balaclava N	L	49_591_1550	159) 155	-4	0.3
	Т	591_580_579	293	3 233	-60	3.7
	R	591_580_587	238	3 195	-43	2.9
Epping E	L	1549_48_579	63	7 588	-49	2.0
	т	1549_580_587	128	5 1483	198	5.3
	R	1550_580_591	60) 82	22	2.6
Balaclava S	L	15_587_588	102	2 78	-24	2.5
	т	15_580_591	12:	l 111	-10	0.9
	R	15_580_1550	322	2 337	15	0.8
Epping W	L	592_591_49	94	1 92	-2	0.2
	т	589_580_1550	902	2 1004	102	3.3
	R	587_580_579	140	5 212	66	4.9
Totals			435	9 4570	211	3.2
					No. > 5	1
					No. > 10	0

Intersection	Lane Cove R	d / Talavera Rd						
Approach	Movement		Data	Мо	delled	Difference	GEH	
Lane Cove N	R	803_548_799		374	421	47		2.4
				374	421	47		2.4
						No. > 5		0
						No. > 10		0

Intersection	Lane Cove R	d / Waterloo Rd						
Approach	Movement		Data	Mode	lled	Difference	GEH	
Lane Cove N	R	734_716_717		116	163	47		4.0
Totals				116	163	47	,	4.0
						No. > 5		0
						No. > 10		0

Appendix B

SIDRA Intersection Outputs

Site: S1_AM

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Move	ment Perfe	ormance - \	Vehicles								
Mov ID	OD Mov	Demano Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South	Balaclava I		70	V/C	Sec		ven	m		per veh	km/h
10	L2	35	21.7	0.844	64.7	LOS E	29.2	213.9	0.98	0.94	31.1
11	T1	409	4.0	0.844	58.9	LOS E	29.2	213.9	0.98	0.94	30.7
12	R2	749	1.5	0.732	55.0	LOS D	22.1	156.8	0.92	0.84	32.3
Appro	ach	1193	3.0	0.844	56.6	LOS E	29.2	213.9	0.94	0.88	31.7
East: I	Epping Road	βE									
1	L2	282	3.2	0.349	9.4	LOS A	2.5	19.6	0.17	0.53	55.5
2	T1	810	7.2	0.469	14.6	LOS B	11.2	79.8	0.45	0.41	54.6
3	R2	242	0.0	0.829	76.6	LOS F	8.7	60.6	1.00	0.85	27.4
Appro	ach	1334	5.0	0.829	24.6	LOS B	11.2	79.8	0.49	0.52	46.4
North:	Balaclava F	Road N									
4	L2	50	27.3	0.271	37.2	LOS C	2.3	21.0	0.80	0.71	38.1
5	T1	66	9.9	0.712	72.9	LOS F	4.3	30.3	0.98	0.79	27.8
6	R2	52	33.3	0.809	87.0	LOS F	3.9	35.5	1.00	0.86	25.2
Appro	ach	168	22.3	0.809	66.5	LOS E	4.3	35.5	0.93	0.79	29.1
West:	Epping Roa	d W									
7	L2	315	4.9	0.295	7.2	LOS A	0.6	4.3	0.03	0.57	56.9
8	T1	1920	1.1	0.864	21.7	LOS B	37.9	266.8	0.70	0.67	49.5
9	R2	96	1.4	0.664	73.5	LOS F	6.6	46.5	1.00	0.79	28.0
Appro	ach	2331	1.6	0.864	21.8	LOS B	37.9	266.8	0.62	0.66	48.8
All Vel	nicles	5026	3.5	0.864	32.4	LOS C	37.9	266.8	0.67	0.68	41.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P4	South Full Crossing	6	29.6	LOS C	0.0	0.0	0.65	0.65
P1	East Full Crossing	191	54.5	LOS E	0.7	0.7	0.89	0.89
P2	North Full Crossing	3	30.9	LOS D	0.0	0.0	0.66	0.66
P3	West Full Crossing	108	57.9	LOS E	0.4	0.4	0.91	0.91
All Pe	destrians	308	54.9	LOS E			0.89	0.89

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Tuesday, 17 November 2015 2:27:43 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Epping_Balaclava_AM.sip6

Site: S2_AM

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

		ormance - V					050/ D	()		F (())	
Mov ID	OD Mov	Demano Total	d Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	1010 0	veh/h	%	V/C	Sec	Jeivice	venicies	m	Queueu	per veh	km/h
South	: Balaclava I	Road S									
10	L2	35	21.7	0.866	67.9	LOS E	30.3	221.8	0.99	0.97	30.3
11	T1	409	4.0	0.866	62.1	LOS E	30.3	221.8	0.99	0.97	29.9
12	R2	749	1.5	0.751	56.5	LOS E	22.7	160.6	0.94	0.85	31.9
Appro	ach	1193	3.0	0.866	58.8	LOS E	30.3	221.8	0.96	0.90	31.1
East:	Epping Road	dE									
1	L2	282	3.2	0.345	9.0	LOS A	2.2	17.3	0.15	0.53	55.8
2	T1	810	7.2	0.462	13.8	LOS A	10.7	76.5	0.43	0.39	55.2
3	R2	242	0.0	0.912	82.3	LOS F	9.1	63.6	1.00	0.90	26.3
Appro	ach	1334	5.0	0.912	25.1	LOS B	10.7	76.5	0.47	0.51	46.1
North:	Balaclava F	Road N									
4	L2	50	27.3	0.265	39.2	LOS C	2.4	22.1	0.80	0.71	37.3
5	T1	66	9.9	0.610	70.8	LOS F	4.2	29.5	0.98	0.76	28.1
6	R2	62	33.3	0.826	86.4	LOS F	4.7	42.2	1.00	0.88	25.3
Appro	ach	178	22.9	0.826	67.2	LOS E	4.7	42.2	0.94	0.79	28.9
West:	Epping Roa	d W									
7	L2	317	4.9	0.295	7.2	LOS A	0.6	4.3	0.03	0.57	56.9
8	T1	1933	1.1	0.883	22.6	LOS B	41.0	288.4	0.70	0.68	48.9
9	R2	96	1.4	0.731	75.8	LOS F	6.7	47.6	1.00	0.81	27.5
Appro	ach	2346	1.6	0.883	22.7	LOS B	41.0	288.4	0.62	0.67	48.3
All Ve	hicles	5051	3.6	0.912	33.5	LOS C	41.0	288.4	0.67	0.69	41.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P4	South Full Crossing	6	28.9	LOS C	0.0	0.0	0.64	0.64
P1	East Full Crossing	191	55.4	LOS E	0.7	0.7	0.89	0.89
P2	North Full Crossing	3	30.2	LOS D	0.0	0.0	0.66	0.66
P3	West Full Crossing	108	58.8	LOS E	0.4	0.4	0.92	0.92
All Pe	destrians	308	55.8	LOS E			0.89	0.89

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Tuesday, 17 November 2015 2:41:50 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Epping_Balaclava_AM.sip6

Site: S1_PM

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

		ormance - \									
Mov ID	OD Mov	Demano Total	d Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles		Prop.	Effective Stop Rate	Average Speed
U	IVIOV	veh/h	⊓v %	Sain v/c	sec	Service	venicies veh	Distance m	Queued	per veh	speed km/h
South	: Balaclava I		/0								
10	L2	120	21.7	0.593	63.7	LOS E	14.5	111.9	0.88	0.90	30.7
11	T1	143	4.0	0.593	57.9	LOS E	14.5	111.9	0.88	0.90	30.4
12	R2	363	1.5	0.432	55.5	LOS D	9.9	70.5	0.85	0.79	32.2
Appro	bach	626	6.0	0.593	57.6	LOS E	14.5	111.9	0.86	0.83	31.4
East:	Epping Road	d E									
1	L2	713	3.2	0.929	30.0	LOS C	35.9	275.9	0.85	0.99	42.2
2	T1	1389	7.2	0.970	50.0	LOS D	52.5	375.3	0.99	1.07	35.8
3	R2	62	0.0	0.212	69.9	LOS E	2.0	13.7	0.93	0.72	28.9
Appro	bach	2164	5.6	0.970	43.8	LOS D	52.5	375.3	0.95	1.03	37.4
North	: Balaclava F	Road N									
4	L2	215	27.3	0.619	27.3	LOS B	8.1	74.9	0.80	0.76	42.6
5	T1	338	9.9	1.133	196.3	LOS F	38.7	270.6	0.98	1.42	16.2
6	R2	278	33.3	1.128	205.9	LOS F	35.4	318.7	1.00	1.34	13.9
Appro	bach	831	22.2	1.133	155.6	LOS F	38.7	318.7	0.94	1.23	17.1
West:	Epping Roa	nd W									
7	L2	110	4.9	0.097	6.9	LOS A	0.1	0.8	0.02	0.55	57.3
8	T1	1028	1.1	0.492	23.4	LOS B	13.2	92.8	0.61	0.53	48.4
9	R2	174	1.4	1.204	266.0	LOS F	25.1	177.8	1.00	1.32	11.3
Appro	bach	1312	1.4	1.204	54.2	LOS D	25.1	177.8	0.61	0.64	34.1
All Ve	hicles	4933	7.4	1.204	67.2	LOS E	52.5	375.3	0.84	0.93	29.9
All Ve	hicles	4933	7.4	1.204	67.2	LOSE	52.5	375.3	0.84	0.93	

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P4	South Full Crossing	6	36.4	LOS D	0.0	0.0	0.72	0.72
P1	East Full Crossing	191	60.8	LOS F	0.7	0.7	0.94	0.94
P2	North Full Crossing	3	37.9	LOS D	0.0	0.0	0.74	0.74
P3	West Full Crossing	108	64.4	LOS F	0.4	0.4	0.96	0.96
All Pe	destrians	308	61.4	LOS F			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 4:22:11 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Epping_Balaclava_PM_JRT.sip6

Site: S2_PM

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Move	ment Perfe	ormance - \	Vehicles								
Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Balaclava F	veh/h Road S	%	v/c	Sec	_	veh	m	_	per veh	km/l
10	L2	120	21.7	0.593	63.7	LOS E	14.5	111.9	0.88	0.90	30.7
11	T1	143	4.0	0.593	57.9	LOS E	14.5	111.9	0.88	0.90	30.4
12	R2	363	1.5	0.432	55.5	LOS D	9.9	70.5	0.85	0.79	32.2
Approa	ach	626	6.0	0.593	57.6	LOS E	14.5	111.9	0.86	0.83	31.4
East: E	Epping Road	ΊE									
1	L2	713	3.2	0.929	30.0	LOS C	35.9	275.9	0.85	0.99	42.2
2	T1	1389	7.2	0.970	50.0	LOS D	52.5	375.3	0.99	1.07	35.8
3	R2	62	0.0	0.212	69.9	LOS E	2.0	13.7	0.93	0.72	28.9
Approa	ach	2164	5.6	0.970	43.8	LOS D	52.5	375.3	0.95	1.03	37.4
North:	Balaclava F	Road N									
4	L2	215	27.3	0.620	27.3	LOS B	8.1	74.9	0.80	0.76	42.6
5	T1	338	9.9	1.133	196.3	LOS F	38.7	270.6	0.98	1.42	16.2
6	R2	278	33.3	1.128	205.9	LOS F	35.4	318.7	1.00	1.34	13.9
Approa	ach	831	22.2	1.133	155.6	LOS F	38.7	318.7	0.94	1.23	17.1
West:	Epping Roa	d W									
7	L2	110	4.9	0.097	6.9	LOS A	0.1	0.8	0.02	0.55	57.3
8	T1	1037	1.1	0.496	23.5	LOS B	13.4	94.0	0.61	0.53	48.4
9	R2	174	1.4	1.204	266.0	LOS F	25.1	177.8	1.00	1.32	11.3
Approa	ach	1321	1.4	1.204	54.0	LOS D	25.1	177.8	0.61	0.64	34.7
All Veh	nicles	4942	7.3	1.204	67.2	LOS E	52.5	375.3	0.84	0.93	29.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P4	South Full Crossing	6	36.4	LOS D	0.0	0.0	0.72	0.72
P1	East Full Crossing	191	60.8	LOS F	0.7	0.7	0.94	0.94
P2	North Full Crossing	3	37.9	LOS D	0.0	0.0	0.74	0.74
P3	West Full Crossing	108	64.4	LOS F	0.4	0.4	0.96	0.96
All Pe	destrians	308	61.4	LOS F			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 4:22:26 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Epping_Balaclava_PM_JRT.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Herring Roa	veh/h	%	v/c	Sec	_	veh	m	_	per veh	km/
1	L2	21	5.3	1.023	117.3	LOS F	31.8	223.8	1.00	1.19	21.
2	T1	587	0.4	1.023	146.8	LOS F	31.8	223.8	0.99	1.19	17.
2	R2	423	0.4 1.0	1.175	263.3	LOS F	58.7	414.5	1.00	1.15	11.
o Approa		1031	0.8	1.175	194.0	LOS F	58.7	414.5	0.99	1.30	14.
			0.0						0.00		
East: E	Epping Road										
4	L2	139	1.2	0.089	5.8	LOS A	0.1	1.1	0.02	0.56	54.
5	T1	1085	2.1	0.411	11.8	LOS A	8.4	60.0	0.37	0.32	50.
6	R2	772	1.7	1.132	190.9	LOS F	48.1	341.4	1.00	1.30	14.
Approach		1996	1.9	1.132	80.6	LOS F	48.1	341.4	0.59	0.72	25.
North:	Herring Roa	id N									
7	L2	286	1.6	0.455	39.3	LOS C	12.8	90.7	0.75	0.77	36.
8	T1	161	1.6	1.184	205.1	LOS F	18.3	129.5	1.00	1.20	13.
9	R2	134	1.7	1.184	256.2	LOS F	18.3	129.5	1.00	1.35	11.
Approach		581	1.6	1.184	135.3	LOS F	18.3	129.5	0.87	1.02	18.
West:	Epping Road	Wb									
10	L2	717	1.0	0.389	5.7	LOS A	0.0	0.0	0.00	0.53	54.
11	T1	1990	1.2	1.152	189.8	LOS F	91.7	648.4	1.00	1.68	14.
12	R2	37	4.0	0.478	79.1	LOS F	2.6	18.9	1.00	0.73	25.
Approach		2744	1.2	1.152	140.2	LOS F	91.7	648.4	0.74	1.37	18
All Vehicles		6352	1.4	1.184	129.8	LOS F	91.7	648.4	0.75	1.12	19

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:32:59 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Epping_Herring_AM.sip6

Site: AM Sc2

New Site

Signals - Actuated Coordinated Cycle Time = 140 seconds (User-Given Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Move	ment P <u>erf</u>	ormance - V	ehicle <u>s</u>								
Mov	OD	Demand	nd Flows Deg.		Average	Level of	95% Back of Queue		Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Oputh	Lla min a Da	veh/h	%	v/c	Sec		veh	m		per veh	km/h
	Herring Ro										
1	L2	21	5.3	1.137	181.7	LOS F	41.5	295.0	0.99	1.31	15.5
2	T1	619	1.7	1.137	212.1	LOS F	41.5	295.0	0.98	1.31	13.6
3	R2	423	1.0	1.270	338.4	LOS F	67.2	474.7	1.00	1.59	9.2
Approa	ach	1063	1.5	1.270	261.7	LOS F	67.2	474.7	0.99	1.42	11.5
East: E	Epping Roa	d E									
4	L2	139	1.2	0.124	5.8	LOS A	0.2	1.1	0.02	0.56	54.1
5	T1	1085	5.7	0.499	21.0	LOS B	12.8	94.2	0.55	0.48	44.7
6	R2	805	2.7	1.289	326.9	LOS F	65.9	472.1	1.00	1.56	9.5
Approa	ach	2029	4.2	1.289	141.3	LOS F	65.9	472.1	0.69	0.91	18.2
North:	Herring Ro	ad N									
7	L2	308	3.5	0.425	33.5	LOS C	12.1	87.4	0.64	0.75	38.4
8	T1	192	7.4	0.612	64.8	LOS E	9.5	70.5	0.93	0.74	29.3
9	R2	138	8.5	0.612	71.8	LOS F	9.5	70.5	0.95	0.79	27.6
Approa	ach	638	5.7	0.612	51.2	LOS D	12.1	87.4	0.80	0.75	32.6
West:	Epping Roa	ad W									
10	L2	730	1.4	0.397	5.7	LOS A	0.0	0.0	0.00	0.53	54.8
11	T1	1990	1.4	1.248	273.0	LOS F	106.3	752.7	1.00	1.96	11.0
12	R2	37	4.0	0.287	73.1	LOS F	2.4	17.4	0.92	0.72	27.1
Approa	ach	2757	1.4	1.248	199.5	LOS F	106.3	752.7	0.73	1.57	14.2
All Ver	nicles	6487	2.7	1.289	176.9	LOS F	106.3	752.7	0.77	1.26	15.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:33:01 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Epping_Herring_AM.sip6

Site: PM Sc1

New Site

Signals - Actuated Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demanc		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Herring Roa	veh/h ad S	%	v/c	Sec	_	veh	m	_	per veh	km/l
1	L2	39	2.0	0.631	83.9	LOS F	15.5	110.8	0.93	0.86	26.1
2	T1	318	2.1	0.631	69.8	LOS E	15.5	110.8	0.92	0.80	28.
3	R2	114	0.0	0.391	65.4	LOS E	6.8	47.5	0.88	0.77	29.
Approach		471	1.6	0.631	69.9	LOS E	15.5	110.8	0.91	0.80	28.
East: I	Epping Road	ΙE									
4	L2	314	0.0	0.274	6.1	LOS A	0.5	3.6	0.03	0.56	53.
5	T1	1872	1.2	1.128	164.6	LOS F	75.3	532.4	1.00	1.54	16.
6	R2	344	0.8	0.652	63.1	LOS E	10.8	76.2	0.93	0.80	29.
Approach		2530	1.0	1.128	131.1	LOS F	75.3	532.4	0.87	1.32	19.
North:	Herring Roa	ad N									
7	L2	230	2.2	0.217	6.5	LOS A	0.7	4.7	0.05	0.56	53.
8	T1	534	1.6	1.005	76.5	LOS F	40.0	283.3	0.94	0.96	26.
9	R2	531	0.6	1.005	93.0	LOS F	40.0	283.3	1.00	1.02	23.
Appro	ach	1295	1.3	1.005	70.8	LOS F	40.0	283.3	0.81	0.92	27.
West:	Epping Road	d W									
10	L2	389	1.0	0.211	5.6	LOS A	0.0	0.0	0.00	0.53	54.
11	T1	1063	1.7	0.664	35.8	LOS C	19.1	135.6	0.79	0.68	37.
12	R2	127	1.0	0.482	61.3	LOS E	7.6	53.7	0.88	0.77	29.
Approach		1579	1.4	0.664	30.4	LOS C	19.1	135.6	0.60	0.65	40.
All Vehicles		5875	1.2	1.128	85.8	LOS F	75.3	532.4	0.79	1.01	25.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:42:27 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Epping_Herring_PM.sip6

Site: PM Sc2

New Site

Signals - Actuated Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/l
South:	Herring Roa										
1	L2	39	2.0	0.681	85.3	LOS F	18.0	128.5	0.94	0.87	25.
2	T1	358	2.1	0.681	70.4	LOS E	18.0	128.5	0.93	0.81	28.
3	R2	114	0.0	0.374	64.3	LOS E	6.7	46.9	0.87	0.77	29.
Approa	ach	511	1.6	0.681	70.2	LOS E	18.0	128.5	0.91	0.80	28.
East: I	Epping Road	ΙE									
4	L2	314	0.0	0.274	6.1	LOS A	0.5	3.6	0.03	0.56	53.
5	T1	1872	1.2	1.157	190.9	LOS F	80.6	569.9	1.00	1.65	14.
6	R2	390	0.8	0.739	63.9	LOS E	12.6	88.7	0.95	0.81	29.
Appro	ach	2576	1.0	1.157	149.2	LOS F	80.6	569.9	0.87	1.39	17.
North:	Herring Roa	ad N									
7	L2	282	2.2	0.263	6.5	LOS A	0.9	6.1	0.05	0.57	53.
8	T1	552	1.6	1.039	93.8	LOS F	46.1	326.6	0.94	1.04	23.
9	R2	550	0.6	1.039	116.8	LOS F	46.1	326.6	1.00	1.10	20.
Appro	ach	1384	1.3	1.039	85.1	LOS F	46.1	326.6	0.78	0.97	25.
West:	Epping Roa	d W									
10	L2	398	1.0	0.216	5.6	LOS A	0.0	0.0	0.00	0.53	54.
11	T1	1036	1.7	0.666	36.8	LOS C	18.9	134.4	0.80	0.69	37.
12	R2	127	1.0	0.482	61.3	LOS E	7.6	53.7	0.88	0.77	29.
Approa	ach	1561	1.4	0.666	30.9	LOS C	18.9	134.4	0.60	0.65	39.
All Veł	nicles	6032	1.2	1.157	97.2	LOS F	80.6	569.9	0.79	1.05	23.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:42:29 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Epping_Herring_PM.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Harring Do	veh/h	%	V/C	sec		veh	m		per veh	km/ł
	Herring Roa		0.0	0.000	00.0		0.0	05.0	0.00	0.75	10.4
1	L2	118	9.9	0.292	28.0	LOS B	3.3	25.0	0.80	0.75	40.1
2	T1	115	5.0	0.332	46.4	LOS D	5.6	40.9	0.86	0.69	34.2
3	R2	329	1.3	0.975	87.3	LOS F	24.9	176.4	1.00	1.07	24.6
Appro	ach	562	3.8	0.975	66.5	LOS E	24.9	176.4	0.93	0.92	28.6
East:	Falavera Roa	ad (E)									
4	L2	120	1.1	0.174	30.2	LOS C	3.8	26.9	0.58	0.70	39.9
5	T1	302	0.6	0.207	24.9	LOS B	4.9	34.3	0.59	0.49	42.
6	R2	48	2.8	0.264	68.7	LOS E	1.4	10.2	0.98	0.71	27.9
Appro	ach	470	0.9	0.264	30.7	LOS C	4.9	34.3	0.63	0.56	39.
North:	M2 Ramps										
7	L2	205	2.0	0.192	39.5	LOS C	3.9	28.1	0.70	0.73	35.8
9	R2	103	1.9	0.293	50.8	LOS D	4.9	34.9	0.85	0.76	32.3
Appro	ach	308	2.0	0.293	43.2	LOS D	4.9	34.9	0.75	0.74	34.0
West:	Talavera Ro	ad (W)									
10	L2	68	1.0	0.947	65.2	LOS E	47.2	336.6	1.00	1.11	29.8
11	T1	1261	2.3	0.947	57.8	LOS E	47.2	336.6	0.99	1.10	30.8
12	R2	32	100.0	0.583	73.9	LOS F	2.0	26.4	1.00	0.77	26.
Appro	ach	1361	4.5	0.947	58.5	LOS E	47.2	336.6	0.99	1.09	30.0
All Vel	nicles	2701	3.4	0.975	53.6	LOS D	47.2	336.6	0.89	0.92	31.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Move	ment Performance - Pedestrians							
Mov	Description	Demand	Average		Average Back		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	53	36.1	LOS D	0.1	0.1	0.78	0.78
P2S	East Slip/Bypass Lane Crossing	53	41.8	LOS E	0.1	0.1	0.84	0.84
P3	North Full Crossing	53	33.8	LOS D	0.1	0.1	0.75	0.75
P4	West Full Crossing	53	53.3	LOS E	0.2	0.2	0.94	0.94
All Peo	destrians	211	41.3	LOS E			0.83	0.83

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 11:34:06 AM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Herring_Talavera_AM_JRT.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11		veh/h	%	v/c	Sec	_	veh	m		per veh	km/
	Herring Roa										
1	L2	118	9.9	0.272	27.7	LOS B	3.4	25.5	0.77	0.75	40.
2	T1	115	5.0	0.304	44.4	LOS D	5.4	39.6	0.84	0.67	34.
3	R2	355	1.3	0.964	82.4	LOS F	26.2	185.5	1.00	1.05	25.
Appro	ach	588	3.7	0.964	64.0	LOS E	26.2	185.5	0.92	0.92	29.
East:	lalavera Roa	ad (E)									
4	L2	166	1.1	0.230	29.1	LOS C	5.2	36.9	0.58	0.71	40.
5	T1	362	0.6	0.238	23.5	LOS B	5.7	40.2	0.58	0.48	43.
6	R2	64	2.8	0.352	69.2	LOS E	1.9	13.8	0.99	0.72	27.
Appro	ach	592	1.0	0.352	30.0	LOS C	5.7	40.2	0.62	0.57	40.
North:	M2 Ramps										
7	L2	208	2.0	0.220	43.2	LOS D	4.3	30.7	0.75	0.74	34.
9	R2	103	1.9	0.355	55.0	LOS D	5.2	37.3	0.89	0.77	31.2
Appro	ach	311	2.0	0.355	47.1	LOS D	5.2	37.3	0.80	0.75	33.3
West:	Talavera Ro	ad (W)									
10	L2	68	1.0	0.945	63.2	LOS E	48.7	347.0	1.00	1.11	30.3
11	T1	1308	2.3	0.945	55.5	LOS D	48.7	347.0	0.98	1.08	31.4
12	R2	40	100.0	0.738	76.0	LOS F	2.6	34.3	1.00	0.84	26.
Appro	ach	1416	5.0	0.945	56.5	LOS D	48.7	347.0	0.98	1.08	31.
All Vel	nicles	2907	3.6	0.964	51.6	LOS D	48.7	347.0	0.88	0.91	32.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Move	ment Performance - Pedestrians							l
Mov	Deservicien	Demand	Average		Average Back		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	South Full Crossing	53	34.6	LOS D	0.1	0.1	0.76	0.76
P2S	East Slip/Bypass Lane Crossing	53	40.1	LOS E	0.1	0.1	0.82	0.82
P3	North Full Crossing	53	32.3	LOS D	0.1	0.1	0.73	0.73
P4	West Full Crossing	53	51.5	LOS E	0.2	0.2	0.93	0.93
All Peo	destrians	211	39.6	LOS D			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 11:47:17 AM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Herring_Talavera_AM_JRT.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Dem <u>an</u>	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	Herring Roa	ad									
1	L2	143	9.9	0.183	16.0	LOS B	2.6	20.1	0.47	0.69	46.2
2	T1	380	5.0	0.722	42.5	LOS C	18.4	130.9	0.88	0.77	35.2
3	R2	267	1.3	0.722	49.3	LOS D	18.4	130.9	0.92	0.84	33.4
Appro	ach	790	4.6	0.722	40.0	LOS C	18.4	130.9	0.82	0.78	36.2
East:	Talavera Roa	ad (E)									
4	L2	206	1.1	0.433	45.8	LOS D	9.3	65.9	0.82	0.78	34.1
5	T1	562	0.6	0.560	41.7	LOS C	13.4	94.4	0.86	0.73	35.7
6	R2	398	2.8	0.719	53.1	LOS D	10.2	73.3	0.89	0.82	31.7
Appro	ach	1166	1.4	0.719	46.3	LOS D	13.4	94.4	0.87	0.77	33.9
North:	M2 Ramps										
7	L2	59	2.0	0.050	34.0	LOS C	1.0	7.0	0.60	0.68	37.8
9	R2	59	1.9	0.483	67.2	LOS E	3.5	24.8	0.99	0.75	28.2
Appro	ach	118	2.0	0.483	50.6	LOS D	3.5	24.8	0.80	0.71	32.3
West:	Talavera Ro	ad (W)									
10	L2	112	1.0	0.705	50.9	LOS D	16.7	119.1	0.92	0.86	33.3
11	T1	568	2.3	0.705	44.2	LOS D	17.1	121.7	0.92	0.82	34.6
12	R2	33	100.0	0.144	48.8	LOS D	1.5	19.1	0.78	0.72	32.9
Appro	ach	713	6.5	0.705	45.5	LOS D	17.1	121.7	0.91	0.82	34.3
All Vel	nicles	2787	3.7	0.722	44.5	LOS D	18.4	130.9	0.86	0.78	34.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Move	ment Performance - Pedestrians							l
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	47.8	LOS E	0.2	0.2	0.89	0.89
P2S	East Slip/Bypass Lane Crossing	53	24.1	LOS C	0.1	0.1	0.63	0.63
P3	North Full Crossing	53	45.2	LOS E	0.2	0.2	0.87	0.87
P4	West Full Crossing	53	44.3	LOS E	0.2	0.2	0.86	0.86
All Peo	destrians	211	40.3	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 12:13:45 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Herring_Talavera_PM_jrt.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Dem <u>an</u>	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/l
South	Herring Roa	ad									
1	L2	143	9.9	0.187	16.8	LOS B	2.8	21.2	0.49	0.69	45.8
2	T1	380	5.0	0.807	47.7	LOS D	21.1	150.1	0.92	0.85	33.5
3	R2	294	1.3	0.807	54.5	LOS D	21.1	150.1	0.97	0.89	31.8
Appro	ach	817	4.5	0.807	44.8	LOS D	21.1	150.1	0.86	0.84	34.5
East:	Talavera Roa	ad (E)									
4	L2	280	1.1	0.552	45.8	LOS D	13.1	92.4	0.84	0.80	34.
5	T1	741	0.6	0.721	42.4	LOS C	19.6	137.6	0.91	0.79	35.
6	R2	441	2.8	0.809	56.0	LOS D	11.9	85.3	0.90	0.87	30.
Appro	ach	1462	1.4	0.809	47.2	LOS D	19.6	137.6	0.89	0.81	33.
North:	M2 Ramps										
7	L2	67	2.0	0.056	34.1	LOS C	1.1	8.0	0.61	0.68	37.
9	R2	59	1.9	0.552	68.9	LOS E	3.6	25.4	1.00	0.76	27.
Appro	ach	126	2.0	0.552	50.4	LOS D	3.6	25.4	0.79	0.72	32.4
West:	Talavera Roa	ad (W)									
10	L2	112	1.0	0.772	52.8	LOS D	20.7	147.2	0.94	0.90	32.
11	T1	669	2.3	0.772	45.5	LOS D	20.7	147.2	0.93	0.86	34.
12	R2	42	100.0	0.179	48.3	LOS D	1.9	24.6	0.78	0.73	33.
Appro	ach	823	7.1	0.772	46.6	LOS D	20.7	147.2	0.92	0.86	33.
All Ve	nicles	3228	3.6	0.809	46.5	LOS D	21.1	150.1	0.89	0.83	33.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move Mov	ment Performance - Pedestrians	Demand	Average	Level of	Average Back of	of Queue	Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	South Full Crossing	53	46.0	LOS E	0.2	0.2	0.88	0.88
P2S	East Slip/Bypass Lane Crossing	53	26.1	LOS C	0.1	0.1	0.66	0.66
P3	North Full Crossing	53	43.4	LOS E	0.2	0.2	0.85	0.85
P4	West Full Crossing	53	46.0	LOS E	0.2	0.2	0.88	0.88
All Peo	lestrians	211	40.4	LOS E			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 12:14:40 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Herring_Talavera_PM_jrt.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back (of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/l
South:	Herring Roa	ad									
1	L2	40	9.9	0.071	24.7	LOS B	1.1	8.1	0.61	0.68	41.0
2	T1	104	5.0	0.245	41.2	LOS C	4.6	33.7	0.79	0.63	36.0
3	R2	135	1.3	0.326	47.7	LOS D	6.2	43.7	0.82	0.76	33.5
Approa	ach	279	3.9	0.326	42.0	LOS C	6.2	43.7	0.78	0.70	35.4
East:	Talavera Roa	ad (E)									
4	L2	261	1.1	0.333	26.9	LOS B	8.1	57.1	0.57	0.72	41.3
5	T1	419	0.6	0.254	20.5	LOS B	6.1	43.1	0.54	0.45	45.0
6	R2	117	2.8	0.321	61.6	LOS E	3.2	23.0	0.94	0.75	29.5
Approa	ach	797	1.1	0.333	28.6	LOS C	8.1	57.1	0.61	0.58	40.7
North:	M2 Ramps										
7	L2	34	2.0	0.046	47.1	LOS D	0.7	5.2	0.77	0.68	33.3
9	R2	17	1.9	0.186	68.1	LOS E	1.0	7.1	0.97	0.69	28.1
Approa	ach	51	2.0	0.186	54.1	LOS D	1.0	7.1	0.84	0.69	31.3
West:	Talavera Ro	ad (W)									
10	L2	22	1.0	0.204	28.6	LOS C	4.5	31.7	0.51	0.49	42.3
11	T1	312	2.3	0.204	21.4	LOS B	4.7	33.7	0.52	0.46	44.3
12	R2	33	100.0	0.301	63.6	LOS E	1.8	23.9	0.94	0.74	29.1
Approa	ach	367	10.9	0.301	25.6	LOS B	4.7	33.7	0.55	0.49	42.2
All Vel	nicles	1494	4.0	0.333	31.2	LOS C	8.1	57.1	0.63	0.59	39.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	31.6	LOS D	0.1	0.1	0.73	0.73
P2S	East Slip/Bypass Lane Crossing	53	37.7	LOS D	0.1	0.1	0.79	0.79
P3	North Full Crossing	53	29.5	LOS C	0.1	0.1	0.70	0.70
P4	West Full Crossing	53	48.7	LOS E	0.2	0.2	0.90	0.90
All Peo	destrians	211	36.9	LOS D			0.78	0.78

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 12:22:00 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\Saturday\Herring_Talavera_SAT.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (User-Given Cycle Time)

Mov	OD	Dem <u>an</u>	d Flows	Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South:	Herring Roa	ad									
1	L2	40	9.9	0.079	27.6	LOS B	1.2	8.8	0.66	0.69	40.3
2	T1	104	5.0	0.228	39.3	LOS C	4.5	32.5	0.77	0.61	36.6
3	R2	173	1.3	0.389	46.8	LOS D	7.9	55.8	0.82	0.77	33.7
Approa	ach	317	3.6	0.389	41.9	LOS C	7.9	55.8	0.78	0.71	35.4
East: 7	Talavera Roa	ad (E)									
4	L2	323	1.1	0.382	24.4	LOS B	9.5	67.0	0.54	0.72	42.5
5	T1	572	0.6	0.321	18.1	LOS B	8.0	56.2	0.52	0.44	46.3
6	R2	153	2.8	0.840	74.9	LOS F	5.0	35.6	1.00	0.88	26.7
Approa	ach	1048	1.1	0.840	28.3	LOS B	9.5	67.0	0.60	0.59	40.8
North:	M2 Ramps										
7	L2	43	2.0	0.078	53.1	LOS D	1.0	7.3	0.84	0.70	31.6
9	R2	17	1.9	0.186	68.1	LOS E	1.0	7.1	0.97	0.69	28.1
Approa	ach	60	2.0	0.186	57.4	LOS E	1.0	7.3	0.88	0.70	30.5
West:	Talavera Ro	ad (W)									
10	L2	22	1.0	0.268	27.3	LOS B	6.2	44.2	0.49	0.47	43.1
11	T1	450	2.3	0.268	19.5	LOS B	6.3	45.2	0.49	0.44	45.3
12	R2	46	100.0	0.854	79.8	LOS F	3.2	41.2	1.00	0.93	25.8
Approa	ach	518	10.9	0.854	25.3	LOS B	6.3	45.2	0.54	0.49	42.4
All Veh	nicles	1943	4.1	0.854	30.6	LOS C	9.5	67.0	0.62	0.59	39.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	28.8	LOS C	0.1	0.1	0.69	0.69
P2S	East Slip/Bypass Lane Crossing	53	36.1	LOS D	0.1	0.1	0.78	0.78
P3	North Full Crossing	53	26.7	LOS C	0.1	0.1	0.67	0.67
P4	West Full Crossing	53	46.9	LOS E	0.2	0.2	0.89	0.89
All Peo	lestrians	211	34.6	LOS D			0.76	0.76

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 12:22:01 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\Saturday\Herring_Talavera_SAT.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	East: Waterlo	oo Road E									
4	L2	143	7.3	0.162	21.0	LOS B	3.6	26.6	0.40	0.68	43.6
5	T1	178	2.9	0.566	58.8	LOS E	11.0	78.7	0.94	0.77	30.7
6	R2	300	21.3	0.730	41.6	LOS C	14.7	121.7	0.92	0.84	35.4
Appro	ach	621	12.8	0.730	41.8	LOS C	14.7	121.7	0.81	0.78	35.4
North	East: Herring	Road N									
7	L2	197	33.3	0.347	36.4	LOS C	8.0	72.3	0.64	0.75	36.8
8	T1	126	19.5	0.222	55.1	LOS D	3.6	29.1	0.86	0.66	31.6
9	R2	106	27.9	0.737	77.3	LOS F	7.5	64.8	1.00	0.84	26.2
Appro	ach	429	27.9	0.737	52.0	LOS D	8.0	72.3	0.79	0.75	32.7
North\	Vest: Univer	sity Avenue	W								
10	L2	99	20.3	0.482	62.2	LOS E	8.5	67.4	0.91	0.78	29.8
11	T1	196	2.6	0.482	57.5	LOS E	9.2	65.6	0.92	0.75	30.8
Appro	ach	295	8.6	0.482	59.1	LOS E	9.2	67.4	0.91	0.76	30.5
South	Nest: Herring	g Road S									
1	L2	217	1.9	0.693	40.5	LOS C	25.4	181.2	0.81	0.77	36.6
2	T1	776	2.2	0.693	36.1	LOS C	25.8	183.8	0.82	0.75	37.4
3	R2	810	0.9	0.732	52.1	LOS D	23.4	165.2	0.91	0.84	32.1
Appro	ach	1803	1.6	0.732	43.8	LOS D	25.8	183.8	0.86	0.79	34.7
All Vel	nicles	3148	8.0	0.737	46.0	LOS D	25.8	183.8	0.84	0.78	34.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec		ped	m		per ped
P2	SouthEast Full Crossing	145	64.5	LOS F	0.6	0.6	0.96	0.96
P3	NorthEast Full Crossing	117	64.4	LOS F	0.4	0.4	0.96	0.96
P4	NorthWest Full Crossing	139	57.9	LOS E	0.5	0.5	0.91	0.91
P1	SouthWest Full Crossing	27	64.2	LOS F	0.1	0.1	0.96	0.96
All Pe	destrians	428	62.3	LOS F			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:31:12 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Herring_Waterloo_AM.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD		d Flows	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/l
South	East: Waterlo	oo Road E									
4	L2	190	7.3	0.206	19.5	LOS B	4.5	33.6	0.38	0.68	44.4
5	T1	186	2.9	0.591	59.1	LOS E	11.6	82.8	0.95	0.78	30.0
6	R2	301	21.3	0.809	47.5	LOS D	16.4	135.6	0.97	0.88	33.5
Approa	ach	677	12.3	0.809	42.8	LOS D	16.4	135.6	0.80	0.80	35.0
NorthE	East: Herring	Road N									
7	L2	228	33.3	0.425	40.2	LOS C	10.2	91.8	0.70	0.77	35.5
8	T1	136	19.5	0.239	55.3	LOS D	3.9	31.6	0.86	0.67	31.6
9	R2	109	27.9	0.704	75.6	LOS F	7.5	65.5	1.00	0.83	26.5
Approa	ach	473	28.1	0.704	52.7	LOS D	10.2	91.8	0.82	0.75	31.9
North\	Vest: Univer	sity Avenue	W								
10	L2	106	20.3	0.509	62.5	LOS E	9.1	72.1	0.91	0.78	29.7
11	T1	206	2.6	0.509	57.8	LOS E	9.7	69.7	0.92	0.76	30.7
Appro	ach	312	8.6	0.509	59.4	LOS E	9.7	72.1	0.92	0.77	30.4
South	Nest: Herring	g Road S									
1	L2	217	1.9	0.729	39.5	LOS C	28.1	199.9	0.82	0.78	37.1
2	T1	800	2.2	0.729	33.9	LOS C	28.1	199.9	0.80	0.72	38.3
3	R2	864	0.9	0.807	52.1	LOS D	29.4	207.1	0.90	0.87	32.1
Approa	ach	1881	1.6	0.807	42.9	LOS D	29.4	207.1	0.85	0.79	35.0
All Vel	nicles	3343	8.2	0.809	45.8	LOS D	29.4	207.1	0.84	0.79	34.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians	;						Í
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	SouthEast Full Crossing	145	64.5	LOS F	0.6	0.6	0.96	0.96
P3	NorthEast Full Crossing	117	64.4	LOS F	0.4	0.4	0.96	0.96
P4	NorthWest Full Crossing	139	57.9	LOS E	0.5	0.5	0.91	0.91
P1	SouthWest Full Crossing	27	64.2	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	428	62.3	LOS F			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:31:14 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Herring_Waterloo_AM.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	East: Waterlo	oo Road E									
4	L2	753	7.3	0.952	48.7	LOS D	45.1	330.9	0.75	0.88	33.1
5	T1	214	2.9	0.952	70.5	LOS F	45.1	330.9	1.00	1.04	27.2
6	R2	427	21.3	0.898	45.5	LOS D	22.5	186.1	0.99	0.97	34.2
Approa	ach	1394	10.9	0.952	51.0	LOS D	45.1	330.9	0.86	0.93	32.3
NorthE	ast: Herring	Road N									
7	L2	196	33.3	0.760	40.4	LOS C	8.7	78.0	0.63	0.77	35.4
8	T1	473	19.5	0.832	66.8	LOS E	16.6	135.5	1.00	0.93	28.7
9	R2	138	27.9	0.891	84.8	LOS F	10.5	91.1	1.00	0.94	24.8
Approa	ach	807	24.3	0.891	63.5	LOS E	16.6	135.5	0.91	0.89	29.3
NorthV	Vest: Univer	sity Avenue	W								
10	L2	180	20.3	0.400	43.2	LOS D	9.8	79.3	0.72	0.75	34.9
11	T1	268	2.6	0.400	39.8	LOS C	11.3	80.7	0.75	0.65	36.2
Approa	ach	448	9.7	0.400	41.2	LOS C	11.3	80.7	0.74	0.69	35.7
South\	Nest: Herring	g Road S									
1	L2	46	1.9	0.957	87.3	LOS F	32.6	232.6	1.00	1.11	25.3
2	T1	735	2.2	0.957	81.7	LOS F	32.6	232.6	1.00	1.11	25.7
3	R2	232	0.9	0.419	64.6	LOS E	7.0	49.5	0.92	0.78	28.9
Approa	ach	1013	1.9	0.957	78.1	LOS F	32.6	232.6	0.98	1.03	26.3
All Ver	nicles	3662	11.2	0.957	60.1	LOS E	45.1	330.9	0.89	0.92	30.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians	\$						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	SouthEast Full Crossing	145	64.5	LOS F	0.6	0.6	0.96	0.96
P3	NorthEast Full Crossing	117	46.6	LOS E	0.4	0.4	0.82	0.82
P4	NorthWest Full Crossing	139	57.9	LOS E	0.5	0.5	0.91	0.91
P1	SouthWest Full Crossing	27	48.9	LOS E	0.1	0.1	0.84	0.84
All Peo	destrians	428	56.5	LOS E			0.90	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 5:09:26 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Herring_Waterloo_PM_JRT.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Dem <u>an</u>	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	East: Waterlo	oo Road E									
4	L2	909	7.3	1.005	57.0	LOS E	62.2	456.3	0.72	0.92	30.8
5	T1	237	2.9	1.005	93.2	LOS F	62.2	456.3	1.00	1.13	23.3
6	R2	423	21.3	0.994	81.2	LOS F	29.9	247.4	1.00	1.10	25.7
Approa	ach	1569	10.4	1.005	69.0	LOS E	62.2	456.3	0.84	1.00	27.9
NorthE	East: Herring	Road N									
7	L2	184	33.3	0.381	45.3	LOS D	8.9	80.4	0.74	0.77	33.8
8	T1	406	19.5	0.707	61.2	LOS E	13.1	106.8	0.98	0.83	30.0
9	R2	149	27.9	1.036	136.3	LOS F	14.9	128.9	1.00	1.12	18.4
Approa	ach	739	24.6	1.036	72.4	LOS F	14.9	128.9	0.92	0.88	27.3
NorthV	Vest: Univer	sity Avenue	W								
10	L2	187	20.3	0.346	34.5	LOS C	8.6	69.7	0.62	0.71	38.0
11	T1	279	2.6	0.346	30.8	LOS C	10.1	72.3	0.65	0.57	39.7
Approa	ach	466	9.7	0.346	32.3	LOS C	10.1	72.3	0.63	0.63	39.0
South\	Nest: Herring	g Road S									
1	L2	46	1.9	0.920	77.2	LOS F	29.0	206.8	1.00	1.04	27.2
2	T1	710	2.2	0.920	71.7	LOS F	29.0	206.8	1.00	1.04	27.6
3	R2	350	0.9	0.664	68.3	LOS E	11.4	80.1	0.98	0.82	28.1
Approa	ach	1106	1.8	0.920	70.9	LOS F	29.0	206.8	0.99	0.97	27.7
All Ver	nicles	3880	10.6	1.036	65.8	LOS E	62.2	456.3	0.87	0.92	28.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Move	ment Performance - Pedestrians	;						
Mov	D	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P2	SouthEast Full Crossing	145	64.5	LOS F	0.6	0.6	0.96	0.96
P3	NorthEast Full Crossing	117	39.6	LOS D	0.4	0.4	0.75	0.75
P4	NorthWest Full Crossing	139	57.9	LOS E	0.5	0.5	0.91	0.91
P1	SouthWest Full Crossing	27	41.7	LOS E	0.1	0.1	0.77	0.77
All Peo	destrians	428	54.1	LOS E			0.88	0.88

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 5:15:59 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Herring_Waterloo_PM_JRT.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

	ment Perfo										
Mov ID	OD Mov	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	East: Waterlo		,,,								
4	L2	192	7.3	0.305	25.5	LOS B	5.4	39.2	0.43	0.67	41.8
5	T1	54	2.9	0.305	54.2	LOS D	5.4	39.2	0.86	0.72	31.2
6	R2	84	21.3	0.455	52.6	LOS D	4.6	37.8	0.93	0.76	32.0
Appro	ach	330	10.1	0.455	37.1	LOS C	5.4	39.2	0.63	0.70	36.9
North	East: Herring	Road N									
7	L2	98	33.3	0.322	52.2	LOS D	6.0	53.6	0.79	0.74	32.1
8	T1	507	19.5	0.598	51.3	LOS D	14.1	115.5	0.89	0.76	32.6
9	R2	63	27.9	0.518	76.0	LOS F	4.3	37.2	0.99	0.76	26.4
Appro	ach	668	22.3	0.598	53.8	LOS D	14.1	115.5	0.89	0.76	31.8
North\	West: Univer	sity Avenue	W								
10	L2	167	20.3	0.400	52.2	LOS D	8.7	71.6	0.81	0.78	31.8
11	T1	92	2.6	0.292	55.7	LOS D	5.3	37.8	0.88	0.69	31.5
Appro	ach	259	14.0	0.400	53.4	LOS D	8.7	71.6	0.83	0.75	31.7
South	West: Herring	g Road S									
1	L2	111	1.9	0.538	22.1	LOS B	17.1	122.1	0.51	0.52	45.5
2	T1	965	2.2	0.538	16.9	LOS B	17.6	125.5	0.52	0.49	46.7
3	R2	812	0.9	0.604	41.6	LOS C	20.0	141.2	0.78	0.81	35.3
Appro	ach	1888	1.6	0.604	27.9	LOS B	20.0	141.2	0.63	0.63	41.0
All Vel	nicles	3145	7.9	0.604	36.4	LOS C	20.0	141.2	0.70	0.67	37.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	SouthEast Full Crossing	145	55.2	LOS E	0.5	0.5	0.89	0.89
P3	NorthEast Full Crossing	117	64.4	LOS F	0.4	0.4	0.96	0.96
P4	NorthWest Full Crossing	139	49.2	LOS E	0.5	0.5	0.84	0.84
P1	SouthWest Full Crossing	27	64.2	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	428	56.4	LOS E			0.90	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 2:10:34 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\Saturday\Herring_Waterloo_SAT.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	East: Waterle	oo Road E									
4	L2	337	7.3	0.477	23.7	LOS B	8.9	65.3	0.39	0.67	42.6
5	T1	74	2.9	0.477	56.2	LOS D	8.9	65.3	0.91	0.77	30.6
6	R2	80	21.3	0.446	52.6	LOS D	4.3	36.0	0.94	0.76	32.0
Appro	ach	491	8.9	0.477	33.4	LOS C	8.9	65.3	0.56	0.70	38.3
North	East: Herring	Road N									
7	L2	71	33.3	0.335	59.0	LOS E	5.5	48.1	0.85	0.75	30.5
8	T1	411	19.5	0.622	57.7	LOS E	11.9	97.4	0.94	0.78	30.9
9	R2	71	27.9	0.535	75.1	LOS F	4.8	41.6	0.99	0.77	26.6
Appro	ach	553	22.3	0.622	60.1	LOS E	11.9	97.4	0.94	0.78	30.2
North\	Vest: Univer	sity Avenue	W								
10	L2	179	20.3	0.418	51.7	LOS D	9.3	76.5	0.80	0.78	32.0
11	T1	107	2.6	0.340	56.2	LOS D	6.2	44.5	0.89	0.71	31.4
Appro	ach	286	13.7	0.418	53.4	LOS D	9.3	76.5	0.84	0.75	31.7
South	Nest: Herrin	g Road S									
1	L2	111	1.9	0.535	22.8	LOS B	17.2	122.5	0.52	0.53	45.2
2	T1	946	2.2	0.535	17.6	LOS B	17.6	125.8	0.53	0.50	46.3
3	R2	975	0.9	0.627	35.1	LOS C	22.3	157.1	0.73	0.80	37.7
Appro	ach	2032	1.6	0.627	26.3	LOS B	22.3	157.1	0.62	0.65	41.7
All Vel	nicles	3362	7.1	0.627	35.2	LOS C	22.3	157.1	0.68	0.68	37.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move Mov	ment Performance - Pedestrians	Demand	Average		Average Back of		Prop.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance	Queued	Stop Rate per ped
P2	SouthEast Full Crossing	145	62.6	LOS F	0.5	0.5	0.95	0.95
P3	NorthEast Full Crossing	117	64.4	LOS F	0.4	0.4	0.96	0.96
P4	NorthWest Full Crossing	139	56.1	LOS E	0.5	0.5	0.90	0.90
P1	SouthWest Full Crossing	27	64.2	LOS F	0.1	0.1	0.96	0.96
All Peo	destrians	428	61.1	LOS F			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 2:10:40 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\Saturday\Herring_Waterloo_SAT.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

		ormance - V									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	East: Talave		/0	V/C	360		VEIT				NI11/11
21	L2	158	3.0	0.662	49.3	LOS D	18.3	131.3	0.88	0.82	33.6
22	T1	524	3.0	0.662	45.4	LOS D	18.4	132.2	0.87	0.77	34.2
23	R2	51	3.0	0.199	25.9	LOS B	1.3	9.0	0.67	0.71	41.2
Appro	ach	733	3.0	0.662	44.8	LOS D	18.4	132.2	0.86	0.78	34.4
North	East: Kharto	um (NE)									
24	L2	21	3.0	0.603	68.8	LOS E	8.1	58.1	0.98	0.80	28.9
25	T1	146	3.0	0.603	63.8	LOS E	8.3	59.9	0.98	0.80	29.0
26	R2	89	3.0	0.603	70.9	LOS F	8.3	59.9	0.98	0.79	27.8
Appro	ach	256	3.0	0.603	66.7	LOS E	8.3	59.9	0.98	0.80	28.6
North	Nest: Talave	era Rd (NW)									
27	L2	358	3.0	0.717	22.0	LOS B	28.5	204.9	0.61	0.67	44.7
28	T1	825	3.0	0.717	15.1	LOS B	28.5	204.9	0.52	0.52	47.3
29	R2	657	3.0	1.284	317.0	LOS F	95.7	687.3	0.96	1.53	9.6
Appro	ach	1840	3.0	1.284	124.2	LOS F	95.7	687.3	0.69	0.91	19.7
South	West: Kharto	oum (SW)									
30	L2	106	3.0	0.235	68.9	LOS E	12.6	90.7	1.00	0.84	28.3
31	T1	86	3.0	0.235	63.3	LOS E	12.6	90.7	1.00	0.84	28.8
32	R2	170	3.0	0.715	71.2	LOS F	11.4	81.8	1.00	0.84	27.5
Appro	ach	362	3.0	0.715	68.6	LOS E	12.6	90.7	1.00	0.84	28.0
All Ve	hicles	3191	3.0	1.284	95.1	LOS F	95.7	687.3	0.79	0.86	23.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	ment Performance - Pedestrians	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P5	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P6	NorthEast Full Crossing	53	43.3	LOS E	0.2	0.2	0.79	0.79
P7	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P8	SouthWest Full Crossing	53	47.3	LOS E	0.2	0.2	0.82	0.82
All Pe	destrians	211	54.8	LOS E			0.88	0.88

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 5:39:32 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Khartoum_Talavera_AM_JRT.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back (of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Talave	veh/h	%	v/c	sec		veh	m		per veh	km/
21		178 1178	3.0	0.747	54.9	LOS D	24.5	175.8	0.97	0.86	31.9
				-			-				
22	T1	595	3.0	0.747	48.8	LOS D	24.5	175.8	0.96	0.85	33.
23	R2	51	3.0	0.296	27.4	LOS B	1.5	10.5	0.80	0.74	40.5
Appro	ach	824	3.0	0.747	48.8	LOS D	24.5	175.8	0.95	0.84	33.2
North	East: Kharto	um (NE)									
24	L2	21	3.0	0.567	68.9	LOS E	8.3	59.5	0.97	0.78	28.
25	T1	146	3.0	0.567	63.5	LOS E	8.3	59.5	0.97	0.78	29.0
26	R2	89	3.0	0.567	69.7	LOS E	8.2	59.0	0.97	0.79	28.
Appro	ach	256	3.0	0.567	66.1	LOS E	8.3	59.5	0.97	0.78	28.
North\	Nest: Talave	era Rd (NW)									
27	L2	358	3.0	0.595	19.6	LOS B	17.2	123.6	0.50	0.66	45.
28	T1	861	3.0	0.595	15.8	LOS B	20.3	146.1	0.53	0.54	47.1
29	R2	657	3.0	1.326	353.8	LOS F	102.0	732.4	1.00	1.58	8.8
Appro	ach	1876	3.0	1.326	134.9	LOS F	102.0	732.4	0.68	0.93	18.6
South	West: Kharto	oum (SW)									
30	L2	138	3.0	0.308	47.8	LOS D	11.7	84.0	1.00	0.83	33.
31	T1	86	3.0	0.308	42.2	LOS C	11.7	84.0	1.00	0.83	34.3
32	R2	200	3.0	0.843	76.4	LOS F	14.3	102.7	1.00	0.90	26.
Appro	ach	424	3.0	0.843	60.1	LOS E	14.3	102.7	1.00	0.86	30.
All Vel	hicles	3380	3.0	1.326	99.3	LOS F	102.0	732.4	0.81	0.89	22.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	ment Performance - Pedestrians	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P5	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P6	NorthEast Full Crossing	53	43.3	LOS E	0.2	0.2	0.79	0.79
P7	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P8	SouthWest Full Crossing	53	47.3	LOS E	0.2	0.2	0.82	0.82
All Pe	destrians	211	54.8	LOS E			0.88	0.88

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Monday, 23 November 2015 5:42:39 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\Khartoum_Talavera_AM_JRT.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Move	ment Perfe	ormance - V	ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Talave	veh/h	%	v/c	sec		veh	m		per veh	km/h
21		202	3.0	0.643	29.6	LOS C	23.6	169.2	0.67	0.67	41.2
22	T1	907	3.0	0.643	23.2	LOS B	23.6	169.2	0.65	0.61	43.1
23	R2	55	3.0	0.172	20.8	LOS B	1.4	9.7	0.53	0.68	43.7
Approa	ach	1164	3.0	0.643	24.2	LOS B	23.6	169.2	0.65	0.62	42.8
NorthE	East: Kharto	um (NE)									
24	L2	26	3.0	0.145	38.5	LOS C	3.6	26.0	0.62	0.56	37.6
25	T1	73	3.0	0.145	34.9	LOS C	3.6	26.0	0.64	0.58	37.5
26	R2	26	3.0	0.145	56.9	LOS E	1.8	13.0	0.80	0.70	31.0
Appro	ach	125	3.0	0.145	40.2	LOS C	3.6	26.0	0.67	0.60	35.9
North	Vest: Talave	era Rd (NW)									
27	L2	493	3.0	0.558	26.8	LOS B	18.3	131.5	0.59	0.76	40.8
28	T1	345	3.0	0.371	18.8	LOS B	10.7	77.1	0.50	0.43	45.9
29	R2	211	3.0	0.806	35.2	LOS C	8.1	58.1	0.87	0.87	37.3
Approa	ach	1049	3.0	0.806	25.9	LOS B	18.3	131.5	0.62	0.68	41.5
South	West: Kharto	oum (SW)									
30	L2	189	3.0	0.246	28.1	LOS B	6.3	44.9	0.52	0.71	40.3
31	T1	228	3.0	0.642	47.6	LOS D	17.1	122.9	0.88	0.77	33.3
32	R2	77	3.0	0.642	53.5	LOS D	17.1	122.9	0.88	0.77	32.9
Appro	ach	494	3.0	0.642	41.1	LOS C	17.1	122.9	0.74	0.75	35.6
All Vel	nicles	2832	3.0	0.806	28.5	LOS B	23.6	169.2	0.65	0.66	40.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

	ment Performance - Pedestrians		Average		Average Book	of Outouto	Drop	Effective
Mov ID	Description	Demand Flow	Average Delav	Service	Average Back Pedestrian	Distance	Prop. Queued	Stop Rate
		ped/h	sec	Cervice	ped	m	Queucu	per ped
P5	SouthEast Full Crossing	53	41.0	LOS E	0.2	0.2	0.77	0.77
P6	NorthEast Full Crossing	53	24.7	LOS C	0.1	0.1	0.59	0.59
P7	NorthWest Full Crossing	53	42.5	LOS E	0.2	0.2	0.78	0.78
P8	SouthWest Full Crossing	53	27.7	LOS C	0.1	0.1	0.63	0.63
All Pe	destrians	211	34.0	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Thursday, 19 November 2015 3:23:07 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Khartoum_Talavera_PM.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Move	ment Perf	ormance - V	ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
SouthE	East: Talave	veh/h	%	v/c	sec		veh	m		per veh	km/h
21	L2	204	3.0	0.691	29.7	LOS C	26.8	192.3	0.70	0.69	41.2
22	T1	1011	3.0	0.691	23.2	LOS B	26.8	192.3	0.67	0.63	43.1
23	R2	55	3.0	0.197	21.3	LOS B	1.4	9.9	0.54	0.68	43.5
Approa		1270	3.0	0.691	24.1	LOG B	26.8	192.3	0.67	0.64	42.8
••		-	0.0	0.001	27.1	LOOD	20.0	152.5	0.07	0.04	42.0
NorthE	ast: Kharto	um (NE)									
24	L2	26	3.0	0.157	38.6	LOS C	4.0	28.4	0.63	0.56	37.6
25	T1	73	3.0	0.157	33.1	LOS C	4.0	28.4	0.63	0.56	38.3
26	R2	118	3.0	0.514	57.9	LOS E	6.8	49.1	0.87	0.79	30.4
Approa	ach	217	3.0	0.514	47.2	LOS D	6.8	49.1	0.76	0.69	33.5
NorthV	Vest: Talave	era Rd (NW)									
27	L2	512	3.0	0.606	26.7	LOS B	20.8	149.6	0.61	0.76	41.0
28	T1	469	3.0	0.606	19.3	LOS B	20.8	149.6	0.54	0.49	45.4
29	R2	211	3.0	0.922	58.4	LOS E	11.0	79.0	0.98	1.00	30.2
Approa	ach	1192	3.0	0.922	29.4	LOS C	20.8	149.6	0.65	0.70	40.0
South	Vest: Kharto	oum (SW)									
30	L2	217	3.0	0.278	29.3	LOS C	7.4	53.4	0.54	0.72	39.7
31	T1	228	3.0	0.700	43.4	LOS D	20.0	143.5	0.87	0.79	34.4
32	R2	130	3.0	0.700	49.0	LOS D	20.0	143.5	0.87	0.79	34.0
Approa	ach	575	3.0	0.700	39.3	LOS C	20.0	143.5	0.75	0.76	36.1
All Veh	icles	3254	3.0	0.922	30.3	LOS C	26.8	192.3	0.68	0.69	39.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P5	SouthEast Full Crossing	53	41.0	LOS E	0.2	0.2	0.77	0.77
P6	NorthEast Full Crossing	53	24.1	LOS C	0.1	0.1	0.59	0.59
P7	NorthWest Full Crossing	53	42.5	LOS E	0.2	0.2	0.78	0.78
P8	SouthWest Full Crossing	53	27.1	LOS C	0.1	0.1	0.62	0.62
All Pe	destrians	211	33.7	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARUP PTY LTD | Processed: Thursday, 19 November 2015 3:23:08 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\Khartoum_Talavera_PM.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Talaver	veh/h	%	v/c	Sec		veh	m		per veh	km/ł
21		a Ru (SL) 19	3.0	0.432	78.3	LOS F	3.0	21.5	0.99	0.74	26.6
										-	-
22	T1	45	3.0	0.432	73.9	LOS F	3.0	21.5	1.00	0.73	26.
23	R2	14	3.0	0.432	80.9	LOS F	2.5	17.6	1.00	0.72	26.4
Appro	ach	78	3.0	0.432	76.2	LOS F	3.0	21.5	1.00	0.73	26.
NorthE	East: Lane C	ove Road (N	E)								
24	L2	93	3.0	0.755	14.2	LOS A	24.0	172.0	0.42	0.44	50.
25	T1	2688	3.0	0.755	8.5	LOS A	25.1	180.4	0.44	0.42	52.
26	R2	552	3.0	1.063	119.7	LOS F	23.9	171.6	1.00	1.17	20.
Approa	ach	3333	3.0	1.063	27.1	LOS B	25.1	180.4	0.53	0.55	41.
North\	Vest: Talave	ra Rd (NW)									
27	L2	252	3.0	0.539	40.6	LOS C	11.6	83.5	0.85	0.80	35.4
28	T1	108	3.0	1.050	138.1	LOS F	14.4	103.3	1.00	1.17	18.4
29	R2	170	3.0	1.050	144.1	LOS F	14.4	103.3	1.00	1.16	17.9
Appro	ach	530	3.0	1.050	93.7	LOS F	14.4	103.3	0.93	0.99	23.
South	West: Lane (Cove Road (S	SW)								
30	L2	596	3.0	1.033	85.5	LOS F	94.8	680.5	1.00	1.16	25.
31	T1	2454	3.0	1.033	89.6	LOS F	106.4	764.2	1.00	1.27	24.
32	R2	118	3.0	0.909	87.7	LOS F	9.1	65.1	1.00	0.95	24.4
Approa	ach	3168	3.0	1.033	88.7	LOS F	106.4	764.2	1.00	1.24	24.
All Veł	nicles	7109	3.0	1.063	60.0	LOS E	106.4	764.2	0.77	0.89	30.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:29:25 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\LaneCove_Talavera_AM.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Talave	veh/h	%	v/c	Sec		veh	m		per veh	km/ł
21	L2	19	3.0	0.432	78.3	LOS F	3.0	21.5	0.99	0.74	26.6
22	T1	-		0.432		LOS F		21.5	1.00	0.74	20.0
		45	3.0		73.9		3.0	-			
23	R2	14	3.0	0.432	80.9	LOS F	2.5	17.6	1.00	0.72	26.4
Approa	ach	78	3.0	0.432	76.2	LOS F	3.0	21.5	1.00	0.73	26.7
NorthE	ast: Lane C	ove Road (N	E)								
24	L2	93	3.0	0.763	15.0	LOS B	25.7	184.3	0.45	0.47	50.3
25	T1	2688	3.0	0.763	9.2	LOS A	26.8	192.5	0.47	0.45	52.0
26	R2	643	3.0	1.125	170.0	LOS F	33.5	240.6	1.00	1.29	15.8
Approa	ach	3424	3.0	1.125	39.6	LOS C	33.5	240.6	0.57	0.61	36.3
NorthV	Vest: Talave	ra Rd (NW)									
27	L2	319	3.0	0.646	40.5	LOS C	15.2	108.8	0.89	0.82	35.4
28	T1	108	3.0	1.050	138.1	LOS F	14.4	103.3	1.00	1.17	18.4
29	R2	170	3.0	1.050	144.1	LOS F	14.4	103.3	1.00	1.16	17.9
Approa	ach	597	3.0	1.050	87.7	LOS F	15.2	108.8	0.94	0.98	24.4
South\	Nest: Lane (Cove Road (S	SW)								
30	L2	596	3.0	1.061	107.6	LOS F	102.9	738.7	1.00	1.23	21.8
31	T1	2454	3.0	1.061	112.1	LOS F	114.9	825.1	1.00	1.37	21.1
32	R2	118	3.0	0.826	81.0	LOS F	8.6	61.6	1.00	0.88	25.5
Approa	ach	3168	3.0	1.061	110.1	LOS F	114.9	825.1	1.00	1.32	21.4
All Ver	nicles	7267	3.0	1.125	74.7	LOS F	114.9	825.1	0.79	0.95	26.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:29:27 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\LaneCove_Talavera_AM.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

		ormance - V									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	East: Talave		/0		300		VCIT				KI1/11
21	L2	131	3.0	0.295	48.8	LOS D	7.0	50.3	0.75	0.75	32.9
22	T1	46	3.0	0.295	48.4	LOS D	7.0	50.3	0.81	0.74	32.3
23	R2	80	3.0	0.295	56.2	LOS D	6.1	43.6	0.83	0.73	31.5
Appro	ach	257	3.0	0.295	51.1	LOS D	7.0	50.3	0.79	0.74	32.4
North	East: Lane (Cove Road (N	E)								
24	L2	16	3.0	1.002	54.5	LOS D	58.2	417.9	1.00	1.11	32.7
25	T1	2406	3.0	1.002	55.4	LOS D	71.7	515.0	1.00	1.14	31.5
26	R2	488	3.0	1.566	555.4	LOS F	46.2	331.6	1.00	1.72	5.9
Appro	ach	2910	3.0	1.566	139.3	LOS F	71.7	515.0	1.00	1.23	18.3
North\	Nest: Talave	era Rd (NW)									
27	L2	373	3.0	0.718	41.6	LOS C	16.8	120.3	0.91	0.88	35.0
28	T1	22	3.0	1.065	158.4	LOS F	28.9	207.4	1.00	1.22	16.4
29	R2	512	3.0	1.065	164.0	LOS F	28.9	207.4	1.00	1.21	16.3
Appro	ach	907	3.0	1.065	113.5	LOS F	28.9	207.4	0.96	1.07	20.8
South	West: Lane	Cove Road (S	SW)								
30	L2	138	3.0	1.633	613.9	LOS F	233.3	1675.3	1.00	2.61	5.5
31	T1	2985	3.0	1.633	613.5	LOS F	243.0	1745.0	1.00	2.85	5.4
32	R2	38	3.0	0.488	79.1	LOS F	2.7	19.3	1.00	0.73	25.9
Appro	ach	3161	3.0	1.633	607.1	LOS F	243.0	1745.0	1.00	2.81	5.5
All Vel	hicles	7235	3.0	1.633	337.3	LOS F	243.0	1745.0	0.99	1.89	9.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 10:00:52 AM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\LaneCove_Talavera_PM_JRT.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

		ormance - V									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	East: Talave		/0	V/C	360		Ven				K11/11
21	L2	131	3.0	0.302	49.0	LOS D	7.1	51.0	0.76	0.75	32.9
22	T1	46	3.0	0.302	48.9	LOS D	7.1	51.0	0.81	0.74	32.1
23	R2	80	3.0	0.302	57.1	LOS E	6.1	43.6	0.84	0.74	31.3
Appro	ach	257	3.0	0.302	51.5	LOS D	7.1	51.0	0.79	0.74	32.2
North	East: Lane C	Cove Road (N	E)								
24	L2	16	3.0	1.002	54.8	LOS D	58.6	420.7	1.00	1.11	32.7
25	T1	2406	3.0	1.002	55.5	LOS D	71.7	515.1	1.00	1.14	31.5
26	R2	594	3.0	1.633	616.0	LOS F	59.3	425.7	1.00	1.86	5.4
Appro	ach	3016	3.0	1.633	165.9	LOS F	71.7	515.1	1.00	1.28	16.2
North\	Nest: Talave	era Rd (NW)									
27	L2	550	3.0	1.033	99.6	LOS F	43.1	309.7	1.00	1.10	22.5
28	T1	22	3.0	1.094	179.2	LOS F	31.0	222.6	1.00	1.27	15.0
29	R2	512	3.0	1.094	184.8	LOS F	31.0	222.6	1.00	1.26	14.9
Appro	ach	1084	3.0	1.094	141.5	LOS F	43.1	309.7	1.00	1.18	18.0
South	West: Lane	Cove Road (S	SW)								
30	L2	138	3.0	1.633	613.9	LOS F	233.3	1675.3	1.00	2.61	5.5
31	T1	2985	3.0	1.633	613.5	LOS F	243.0	1745.0	1.00	2.85	5.4
32	R2	38	3.0	0.366	74.8	LOS F	2.6	18.4	0.97	0.73	26.7
Appro	ach	3161	3.0	1.633	607.0	LOS F	243.0	1745.0	1.00	2.81	5.5
All Ve	hicles	7518	3.0	1.633	343.9	LOS F	243.0	1745.0	0.99	1.89	9.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Tuesday, 24 November 2015 10:00:54 AM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\LaneCove_Talavera_PM_JRT.sip6

Site: AM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Occuthe		veh/h	%	v/c	sec		veh	m		per veh	km/h
	East: Waterlo	. ,									
21	L2	42	3.0	0.097	46.2	LOS D	2.1	16.0	0.69	0.68	33.7
22	T1	142	3.0	0.396	54.6	LOS D	8.0	55.8	0.88	0.72	31.8
23	R2	185	3.0	0.570	62.9	LOS E	11.3	81.0	0.93	0.81	29.4
Appro	ach	369	3.0	0.570	57.8	LOS E	11.3	81.0	0.88	0.76	30.7
NorthE	East: Lane C	ove Road (N	E)								
24	L2	416	3.0	1.148	168.6	LOS F	110.3	792.0	1.00	1.43	16.1
25	T1	2406	3.0	1.148	169.5	LOS F	122.9	882.5	1.00	1.62	15.9
26	R2	493	3.0	1.186	245.5	LOS F	34.4	246.7	1.00	1.39	12.0
Approa	ach	3315	3.0	1.186	180.7	LOS F	122.9	882.5	1.00	1.56	15.2
North\	Vest: Waterle	oo (NW)									
27	L2	121	3.0	0.185	32.1	LOS C	4.3	31.2	0.60	0.70	39.0
28	T1	250	3.0	1.220	279.3	LOS F	37.5	269.4	1.00	1.62	10.9
29	R2	125	3.0	0.321	69.4	LOS E	3.9	28.2	0.94	0.75	28.0
Approa	ach	496	3.0	1.220	166.1	LOS F	37.5	269.4	0.89	1.18	16.2
South	Nest: Lane (Cove Road (S	SW)								
30	L2	629	3.0	1.182	193.0	LOS F	123.4	886.2	1.00	1.47	14.6
31	T1	2337	3.0	1.182	198.9	LOS F	135.9	975.7	1.00	1.74	14.1
32	R2	175	3.0	0.702	65.8	LOS E	9.7	69.4	0.96	0.80	28.6
Approach		3141	3.0	1.182	190.3	LOS F	135.9	975.7	1.00	1.63	14.6
All Vehicles		7321	3.0	1.220	177.6	LOS F	135.9	975.7	0.99	1.53	15.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:27:35 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\LaneCove_Waterloo_AM.sip6

Site: AM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
SouthE	East: Waterle		/0	V/C	360		VEIT			per veri	KI11/1
21	L2	42	3.0	0.115	48.9	LOS D	2.3	18.2	0.72	0.68	33.0
22	T1	217	3.0	0.630	58.2	LOS E	13.1	91.8	0.95	0.79	30.9
23	R2	185	3.0	0.594	64.0	LOS E	11.4	82.1	0.94	0.81	29.1
Approa	ach	444	3.0	0.630	59.7	LOS E	13.1	91.8	0.92	0.79	30.3
NorthE	ast: Lane C	ove Road (N	E)								
24	L2	416	3.0	1.166	184.0	LOS F	113.5	815.1	1.00	1.47	15.1
25	T1	2406	3.0	1.166	185.6	LOS F	127.4	915.0	1.00	1.68	14.9
26	R2	493	3.0	1.265	316.2	LOS F	39.5	283.3	1.00	1.53	9.
Approa	ach	3315	3.0	1.265	204.8	LOS F	127.4	915.0	1.00	1.63	13.8
NorthV	Vest: Waterl	oo Rd (NW)									
27	L2	121	3.0	0.203	36.6	LOS C	4.8	34.4	0.65	0.72	37.2
28	T1	297	3.0	1.208	267.7	LOS F	43.7	313.8	1.00	1.65	11.3
29	R2	161	3.0	0.344	66.7	LOS E	4.9	35.4	0.92	0.76	28.6
Approa	ach	579	3.0	1.208	163.5	LOS F	43.7	313.8	0.90	1.21	16.4
South\	Vest: Lane (Cove Road (S	SW)								
30	L2	661	3.0	1.212	217.6	LOS F	129.0	926.2	1.00	1.50	13.3
31	T1	2337	3.0	1.212	225.3	LOS F	144.6	1037.9	1.00	1.83	12.8
32	R2	175	3.0	0.749	67.8	LOS E	9.9	71.1	0.98	0.81	28.2
Approa	ach	3173	3.0	1.212	215.0	LOS F	144.6	1037.9	1.00	1.71	13.:
All Ver	nicles	7511	3.0	1.265	197.4	LOS F	144.6	1037.9	0.99	1.58	14.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:27:36 PM Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\AM\LaneCove_Waterloo_AM.sip6

Site: PM Sc1

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	ment Perfo	Demand		Deg.	Average	Level of	95% Back	of Ououo —	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Waterlo	oo Rd (SE)									
21	L2	159	3.0	0.291	45.2	LOS D	7.3	52.6	0.72	0.76	33.9
22	T1	112	3.0	0.273	49.4	LOS D	5.9	42.5	0.82	0.65	33.4
23	R2	352	3.0	0.903	75.1	LOS F	26.2	188.2	1.00	0.96	26.8
Appro	ach	623	3.0	0.903	62.8	LOS E	26.2	188.2	0.90	0.85	29.4
North	East: Lane C	ove Road (N	E)								
24	L2	187	3.0	1.066	98.9	LOS F	79.1	568.1	1.00	1.24	23.3
25	T1	2430	3.0	1.066	99.7	LOS F	93.0	668.1	1.00	1.33	22.8
26	R2	143	3.0	0.918	86.6	LOS F	5.5	39.4	1.00	0.89	24.7
Appro	ach	2760	3.0	1.066	99.0	LOS F	93.0	668.1	1.00	1.30	22.9
North\	West: Waterle	oo (NW)									
27	L2	431	3.0	0.750	47.2	LOS D	23.2	166.4	0.90	0.88	33.6
28	T1	151	3.0	0.553	61.2	LOS E	9.5	68.2	0.95	0.77	30.2
29	R2	559	3.0	1.076	162.2	LOS F	31.0	222.7	1.00	1.23	16.4
Appro	ach	1141	3.0	1.076	105.4	LOS F	31.0	222.7	0.96	1.04	22.0
South	West: Lane (Cove Road (S	SW)								
30	L2	279	3.0	1.056	88.3	LOS F	72.7	522.0	1.00	1.19	25.1
31	T1	2328	3.0	1.056	91.6	LOS F	89.8	644.7	1.00	1.30	24.0
32	R2	29	3.0	0.310	77.7	LOS F	1.7	12.0	0.98	0.70	26.2
Appro	ach	2636	3.0	1.056	91.1	LOS F	89.8	644.7	1.00	1.28	24.1
All Vehicles		7160	3.0	1.076	94.0	LOS F	93.0	668.1	0.98	1.21	23.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:53:37 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\LaneCove_Waterloo_PM.sip6

Site: PM Sc2

New Site

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (User-Given Cycle Time)

Mov	Movement Performance - Vehicles Mov OD Demand Flows		Deg.	Average	Level of	95% Back of Queue		Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	East: Waterlo	. ,									
21	L2	159	3.0	0.362	50.6	LOS D	8.5	63.1	0.79	0.76	32.3
22	T1	266	3.0	0.712	58.2	LOS E	16.4	114.6	0.96	0.82	30.9
23	R2	352	3.0	1.042	135.4	LOS F	36.1	259.1	1.00	1.16	18.6
Approa	ach	777	3.0	1.042	91.6	LOS F	36.1	259.1	0.94	0.96	24.0
NorthE	East: Lane C	ove Road (N	E)								
24	L2	187	3.0	1.102	127.9	LOS F	85.8	615.9	1.00	1.32	19.7
25	T1	2430	3.0	1.102	130.2	LOS F	102.2	734.1	1.00	1.45	19.2
26	R2	143	3.0	0.918	86.6	LOS F	5.5	39.4	1.00	0.89	24.7
Approach		2760	3.0	1.102	127.8	LOS F	102.2	734.1	1.00	1.41	19.4
North	Vest: Waterle	oo Rd (NW)									
27	L2	431	3.0	0.737	47.9	LOS D	22.1	158.5	0.89	0.92	33.4
28	T1	224	3.0	0.631	57.1	LOS E	13.8	98.9	0.94	0.79	31.2
29	R2	749	3.0	1.109	186.9	LOS F	45.4	326.0	1.00	1.30	14.8
Approa	ach	1404	3.0	1.109	123.5	LOS F	45.4	326.0	0.96	1.10	19.9
South	West: Lane (Cove Road (S	SW)								
30	L2	356	3.0	1.121	137.1	LOS F	86.7	622.2	1.00	1.28	18.8
31	T1	2328	3.0	1.121	145.6	LOS F	109.2	783.9	1.00	1.51	17.8
32	R2	29	3.0	0.310	77.7	LOS F	1.7	12.0	0.98	0.70	26.2
Approa	ach	2713	3.0	1.121	143.7	LOS F	109.2	783.9	1.00	1.47	17.9
All Vehicles		7654	3.0	1.121	129.0	LOS F	109.2	783.9	0.99	1.33	19.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ARUP PTY LTD | Processed: Friday, 27 November 2015 2:53:39 PM

Project: \\global.arup.com\australasia\SYD\Projects\244000\244810-00 Macquarie Centre Expansion\Work\02 - Macquarie Shopping Centre Expansion \Analysis\SIDRA\Models\PM\LaneCove_Waterloo_PM.sip6

Appendix C

Internal Traffic and Parking Report (Colston Budd Rogers & Kafes) AMP CAPITAL

MACQUARIE CENTRE REDEVELOPMENT STAGE I CONCEPT DA INTERNAL TRAFFIC AND PARKING ASSESSMENT

DECEMBER 2015

COLSTON BUDD ROGERS & KAFES PTY LTD ACN 002 334 296 Level 18 Tower A Zenith Centre 821 Pacific Highway CHATSWOOD NSW 2067

 Telephone:
 (02)
 9411 2411

 Facsimile:
 (02)
 9411 2422

 Email:
 cbhk@cbhk.com.au

REF: 9925/4

CHAPTER I

TABLE OF CONTENTS

١.	INTRODUCTIONI
2.	INTERNAL TRAFFIC AND PARKING ASSESSMENT

ATTACHMENTS

ATTACHMEMT A - SHOPPING CENTRE ARRIVAL/DEPARTURE ROUTES & ACCESS POINTS

ATTACHMENT B - ADDITIONAL RETAIL TRIP DISTRIBUTION MATRICES

I. INTRODUCTION

- I.I. Colston Budd Rogers & Kafes Pty Ltd has been retained by AMP Capital to prepare a report on the internal traffic and parking aspects of the proposed Stage
 I DA for the expansion of Macquarie Centre. The site location is shown on Figure I.
- 1.2. The Stage I DA proposes new commercial and/or residential development along the western (Herring Road frontage) of the site and additional retail development. As part of the redevelopment, on-site parking and loading docks will be expanded and reconfigured. Access arrangements will be similar, with some changes to accommodate the additional development, reconfigured parking areas and possible changes to the surrounding road network.
- 1.3. The traffic, transport and parking effects of the Stage I DA have been addressed through the following reports:
 - external traffic/transport assessment prepared by ARUP. This has assessed the traffic impacts of the Stage I DA on the surrounding road network (using network modelling and intersection analysis tools), public transport implications (including the existing and future operation of the Herring Road bus interchange) and pedestrian impacts; and
 - internal traffic and parking assessment prepared by CBRK. This has assessed parking requirements, access arrangements, loading docks, parking layouts and principles of construction management. As the proposal is a Stage I DA, the description and assessment of the internal aspects is at a broad level with a more detailed assessment to be provided as part of future development applications. As part of the CBRK work, estimates of future traffic generation

and distribution of existing and future trips were made. These were provided to ARUPS as inputs for their traffic assessment.

1.4. The findings of the internal traffic and parking assessment are set out in the following chapter.

2. INTERNAL TRAFFIC AND PARKING ASSESSMENT

- 2.1. The internal traffic and parking assessment of the Stage I DA is set out through the following sections:
 - existing situation;
 - proposed Stage | DA;
 - parking provision;
 - access arrangements;
 - internal circulation and parking layouts;
 - servicing arrangements;
 - traffic generation;
 - traffic distribution;
 - principle of construction management; and
 - summary.

Existing Situation

2.2. Macquarie Centre currently comprises some 136,300m² GLA and car parking for some 4,755 vehicles. The shopping centre has access directly to and from Herring Road, Waterloo Road and Talavera Road, as well as onto internal service roads linking car parking areas to Talavera Road and Waterloo Road (both traffic signal controlled).

Proposed Stage | DA

2.3. The Stage I DA proposes new commercial (some 47,450m² GFA) and/or residential development (615 or 915 units) along the western (Herring Road

frontage) of the site and additional retail development (some 39,700m² GLA). Two options are being considered for residential/commercial components:

- Option I 4 residential towers along the Herring Road frontage; and
- Option 2 3 residential and I commercial tower along the Herring Road frontage.
- 2.4. As part of the redevelopment, on-site parking will be expanded (some additional 2,175 spaces) and reconfigured. Tower (commercial and/or residential) parking will be provided on the western part of the site (located beneath the proposed towers). Access arrangements will be similar to the existing situation, with some changes to accommodate the additional development and reconfigured parking. Additional servicing will be accommodated through expansion of existing docks and provision of new docks.
- 2.5. Although not part of the Stage I DA, the traffic and parking assessment takes into the account the possible changes to the Herring Road Bus Interchange (and in particular the closure of Herring Road southbound to general traffic) and how this affects access to/from the site.

Parking Provision

- 2.6. The existing shopping centre provides some 4,755 parking spaces. With some 136,300m² GLA, this is a provision of 3.5 spaces per 100m² GLA. In order to determine future parking for the expanded retail area, we have reviewed information provided by the parking guidance system installed within the shopping centre and undertaken surveys of parking demands during peak periods at the centre.
- 2.7. With the car park guidance system, it is possible to determine the utilisation of the car park for each hour over a given period. Parking guidance systems increase the

practical capacity of car parks (the point at which drivers start to circulate looking for an available parking space) from 95% to 98%. Car park data has been provided for December 2014 and February 2015. A review of the information provided by the car park guidance system shows that:

- peak parking demand in the car park occurred between 10.00am and 2.00pm;
- the peak parking demand in December was observed on Thursday 18 December (prior to Christmas) with a parking utilisation of 97% and on Monday 29 December (Christmas sales) with a parking utilisation of 98%;
- the parking utilisation of the car park exceeded 90% on 20 days out of the 29 trading days in December;
- the peak parking demand in February was observed on Thursday 12 February, Thursday 19 February and Friday 27 February with a parking utilisation of 95%;
- the parking utilisation of the car park exceeded 90% on 5 days out of the 28 trading days in February.
- 2.8. Thus based on the above information, the practical capacity of car parking at Macquarie Centre is reached only during peak trading periods such as during the Christmas/New Year sales.
- 2.9. In addition to the review of the parking guidance system data, parking surveys were undertaken on Thursday 12 March and Saturday 14 March 2015. These periods are more representative of typical peak periods during the year. The surveys found a peak parking demand on Saturday of some 4,300 vehicles parked within the centre at 12.00pm. This is equivalent to a parking utilisation of some 90%. The peak parking demand on the Thursday was some 3,625 vehicles, equivalent to a parking utilisation of some 76%.
- 2.10. The above information indicates that provision of additional retail parking at the existing rate (3.5 spaces/100m² GLA) would satisfactorily cater for the parking

generated by the expanded retail area. On this basis the expanded retail area (some 39,700m² GLA) would require an additional 1,390 parking spaces. Parking for the expanded retail area will be provided at a rate of 3.5 spaces/100m² GLA. Appropriate disabled and bicycle parking will be provided in accordance with Council requirements.

- 2.11. For the high density residential component parking will be provided in accordance with DCP 2014 rates for a site located adjacent to major public transport services as set out below:
 - 0.6 spaces per one bedroom dwelling;
 - 0.9 spaces per two bedroom dwelling; and
 - 1.4 spaces per three bedroom dwelling.
- 2.12. Visitor parking would be provided at a rate of 1 space per 10 units. Any additional visitor parking could be accommodated within the main retail car park, noting the sites close proximity to the rail station/bus interchange and that peak visitor parking would occur at night when retail parking demand is lower.
- 2.13. The residential component will comprise some 915 units (Option 1) or some 615 units (Option 2). For the purpose of estimating parking requirements the following unit mix has been assumed:
 - 50% x I bed units;
 - 40% x 2 bed units; and
 - 10% x 3 bed units.
- 2.14. On this basis the residential component would provide 823 spaces for Option 1 (732 residential and 91 visitor) and 553 spaces for Option 2 (492 residential and 61 visitor). Appropriate disabled and bicycle parking will be provided in accordance with Council requirements.

- 2.15. For the commercial component 300 on-site parking spaces are proposed, a rate of one space per 158m² GFA. This is lower than the maximum rate of 1 space per 80m² GFA set out in DCP 2014. Constraining commercial parking for the Stage 1 DA is considered appropriate as it would:
 - reduce traffic generation in an area highly accessible by public transport;
 - encourage travel to/from work by means other than private car; and
 - is consistent with Council's proposal to reduce on-site parking for commercial development within Macquarie Park;
- 2.16. As for the retail and residential components, appropriate disabled and bicycle parking will be provided in accordance with Council requirements.

Access Arrangements

- 2.17. Access to the shopping centre will be maintained via the existing driveways onto Herring Road, Talavera Road and Waterloo Road. In association with the proposed expansion to the shopping centre, the following changes to access are proposed:
 - a new entry driveway to the residential parking will be provided off Talavera Road east of Herring Road. The driveway would provide access to a setdown area for the northern residential tower and access to basement parking for the new towers. The driveway will provide left in only access from Talavera Road;
 - one new loading dock access driveway and a reconfigured existing loading dock access driveway will be provided off Talavera Road, between Herring Road and Link Road. These driveways would cater for service vehicles

ranging from small commercial vehicles to articulated vehicles. The driveways would provide left in/left out access to the new service areas;

- removal of the existing car park exit driveway onto Herring Road, located to the north of Waterloo Road. In association with the proposed development of the centre, this driveway will become redundant. Traffic currently exiting the centre via this driveway will be redistributed to other existing and proposed exit driveways from the centre; and;
- additional capacity on the Link Road approaches to the traffic signal controlled intersections with Waterloo Road and Talavera Road (to accommodate the additional traffic generated by the Stage I DA). Details of these upgrades would be detailed as part of this next design stage.
- 2.18. All new driveways would be designed to comply with the requirements of the Australian Standards for Parking Facilities Part 1: Off-street car parking (AS2890.1-2004) and Part 2: Off-street Commercial Vehicle Facilities (AS2890.2-2002)

Internal Circulation and Parking Layout

- 2.19. As part of the proposed development, the existing multi-deck car park located on the eastern side of the site will be expanded to provide additional parking. New basement parking levels will be developed adjacent to Herring Road. The roof top car park on the eastern side of the site will be expanded with new car park levels. Some existing parking will be lost to accommodate the additional retail space. These spaces will be relocated into the proposed new car parking areas.
- 2.20. Within the proposed new parking areas, car parking dimensions, aisle widths, ramp grades and transitions will be provided in accordance with the Australian Standard for Off-Street car parking facilities (AS2890.1-2004) and for Off-street parking for people with disabilities (AS2890.6-2009). Parking spaces will be 2.6

metres wide by 5.4 metres long, clear of structure, with adjacent circulation aisles of at least 6.6 metres wide, or alternatively 2.7 metres wide by 5.4 metres long, clear of structure, with circulation aisles of at least 6.2 metre wide. Spaces with adjacent obstructions will be wider. Columns will be set back 750mm from the front edge of spaces.

- 2.21. Disabled spaces will be 2.4 metres wide by 5.4 metres long, with an additional 2.4 metre wide adjacent area for wheelchair access. Height clearance will be 2.5 metres above disabled spaces and 2.2 metres elsewhere. These dimensions are considered appropriate, being in accordance with the Australian Standard AS2890.1-2004 and AS2890.6-2009.
- 2.22. With regards to the internal circulation and connections between the existing parking areas within the centre, the following car park connections will be maintained:
 - the existing Herring Road access ramp adjacent to Talavera Road and the connection to the roof top parking area located at the eastern end of the site;
 - the Link Road connection between Waterloo Road and Talavera Road through the site;
 - the two-way connection located adjacent to the northern boundary of the site, between the multi-deck car park and the silver car park;
 - the existing express ramp onto Waterloo Road connecting to/from the multideck car park and the roof top parking area at the eastern end of the site;
 - the existing left in/left out car park access located on Talavera Road (between the two signalised access points);

- the existing left in/left out car park/service access located on Waterloo Road (between the Link Road and Herring Road); and
- the existing service road and ramp onto Talavera Road connecting to/from the roof top parking area at the eastern end of the site.
- 2.23. To improve circulation within the existing car parking areas and to provide convenient access to the new parking areas, some modifications will be undertaken. The main changes proposed are:
 - extension of the existing express parking area located adjacent to Waterloo Road into the new basement parking areas at the western end of the site;
 - provision of new retail and tower parking within the new basement parking areas at the western end of the site and construction of a new access ramp from Talavera Road located adjacent to the western boundary of the site;
 - provision of new internal ramps linking the new basement parking levels and providing convenient connection between existing and proposed parking areas, including new connections through the express parking area to Link Road;
 - provision of new parking levels on the eastern part of the site to accommodate the new retail area on levels 4 and 5;
 - modifications to car park circulation, access controls and provision of new internal ramps, within the existing multi-deck car park at the eastern end of the site, to accommodate the new retail area on levels 4 and 5.

2.24. The above modifications will provide appropriate access to new parking areas and improve access to existing parking areas. All new parking areas will be designed to comply with requirements of AS2890.1-2004 and AS2890.6-2009 with respect to ramp grades, aisle widths, lane widths, height clearances and parking bay dimensions.

Servicing Arrangements

- 2.25. Existing loading areas will be reconfigured and additional loading areas will be provided as part of the Stage I DA to service the additional retail and commercial/residential areas. Whilst the configuration of the loading docks, car parking areas and internal access roads do not form part of the Stage I DA, these aspects have been assessed to demonstrate that the building envelopes work and that an appropriate level of parking, access, internal circulation and servicing can be provided to support the Stage I DA. These matters would be subject to detailed assessment as part of future DA's.
- 2.26. Two new loading areas are proposed. These are:
 - northern loading area to service the existing department store and new retail area. This loading area would be located immediately west of Link Road and would have left in/left out access from Talavera Road. The loading area will be designed to accommodate large rigid trucks and 19 metre articulated trucks, with vehicles entering and departing the loading area in a forward direction;
 - western loading areas to service new retail area located adjacent to Herring Road and the new commercial/residential towers. The western loading areas would extend over three levels with separate loading docks located on each of the levels. Access to these loading areas would be via the reconfigured

existing loading dock access driveway off Talavera Road. The loading areas will be designed to accommodate large rigid trucks and 19 metre articulated trucks, with vehicles entering and departing the loading areas in a forward direction; and

- the existing eastern loading area would be reconfigured to service the new specialty retail to be located within the eastern part of the site. Access to this loading area would be maintained via the existing service road from Talavera Road. Service vehicles accessing this dock would use the existing truck turning area, with vehicles entering and departing the loading area in a forward direction.
- 2.27. All loading areas would be designed to comply with the requirements of the Australian Standard for Off-street commercial vehicle facilities (AS2890.2-2002) and subject to detailed design.

Traffic Generation

- 2.28. Estimates of traffic generation of the various components of the Stage I DA have been based on RMS Guidelines (residential component) and surveys (retail and commercial components). For the residential component, the traffic generation rates for high density residential development are set out in RMS TDT 2013/04. The TDT suggests the following rates:
 - weekday morning peak hour 0.19 trips per unit (two way); and
 - weekday afternoon peak hour 0.15 trips per unit (two way).
- 2.29. For the Saturday midday peak hour the weekday afternoon rate of 0.15 trips per unit (two way) has been adopted. Thus Option 1 (915 units) would generate some 180 vehicles per hour (two way) in the weekday morning peak hour and some 140 vehicles per hour (two way) in the weekday afternoon and Saturday

midday peak hours. For Option 2 (615 units) the residential component would generate some 120 vehicles per hour (two way) in the weekday morning peak hour and some 90 vehicles per hour (two way) in the weekday afternoon and Saturday midday peak hours. The split of traffic was assumed to be 30% in/70% out in the morning peak with the reverse in the afternoon peak. For the Saturday peak a 50% in/50% out was assumed.

- 2.30. For the commercial component a generation rate of 0.5 trips per parking space (two way) has been adopted. This reflects the constrained parking and good access to public transport. Thus Option 2 (300 parking spaces) would generate some 150 vehicles per hour (two way) in the weekday morning and afternoon peak hours. The split of traffic was assumed to be 20% in/80% out in the morning peak with the reverse in the afternoon peak. The commercial component has been assumed to generate no traffic in the Saturday midday peak hour.
- 2.31. For the retail component the existing shopping centre was found to have a traffic generation of 0.9 trips per 100m² GLA in the weekday morning peak hour, 3.0 trips per 100m² GLA in the weekday (Thursday) afternoon peak hour and 4.0 trips per 100m² GLA in the Saturday midday peak hour. These rates are based on surveys of the shopping centre undertaken in February 2015 and adjusted (using information provided by parking guidance system) to reflect November traffic flows (adopted as the design month). The split of traffic was 55% in/45% out in the weekday morning peak, 48% in/52% out in the weekday afternoon peak and 50% in/50% out in the Saturday midday peak.

Table 2.1	Summary of Option I Traffic Generation									
Component	Size	Rate	In	Out	Total					
Weekday AM										
Retail	40,000m ²	0.9/100m ²	200	160	360					
Residential	915 units	0.19/unit	55	125	180					
Total			255	285	540					
Weekday PM										
Retail	40,000m ²	3.0/100m ²	575	625	1200					
Residential	915 units	0.15/unit	100	40	140					
Total			675	665	1340					
Saturday										
Retail	40,000m ²	4.0/100m ²	800	800	1600					
Residential	915 units	0.15/unit	70	70	140					
Total			870	870	1740					

2.32. Table 2.1 and 2.2 summarises the additional traffic generation for Options 1 and 2.

2.33. Examination of Table 2.1 reveals that Option 1 would generate some 540, 1,340 and 1,740 vehicles per hour in the weekday morning, weekday afternoon and Saturday midday peak hours respectively.

Table 2.2	Summary of	Summary of Option 2 Traffic Generation									
Component	Size	Rate	In	Out	Total						
Weekday AM											
Retail	40,000m ²	0.9/100m ²	200	160	360						
Residential	615 units	0.19/unit	35	85	120						
Commercial	300 spaces	0.5/space	120	30	150						
Total			355	275	630						
Weekday PM											
Retail	40,000m ²	3.0/100m ²	575	625	1200						
Residential	615 units	0.15/unit	65	25	90						
Commercial	300 spaces	0.5/space	30	120	150						
Total			640	770	1440						
Saturday											
Retail	40,000m ²	4.0/100m ²	800	800	1600						
Residential	615 units	0.15/unit	45	45	90						
Commercial	300 spaces	0/space	0	0	0						
Total			845	845	1690						

2.34. Examination of Table 2.2 reveals that Option 2 would generate some 630, 1,440 and 1,690 vehicles per hour in the weekday morning, weekday afternoon and Saturday midday peak hours respectively.

Traffic Distribution

- 2.35. The additional traffic generated by the Stage I DA has been distributed to the arrival/departure routes and centre accesses based on surveys of existing shoppers at the centre, counts of traffic movements at the access points, changes in access arrangements to/from the shopping centre and review of existing traffic patterns on the surrounding road network.
- 2.36. To understand how existing shoppers travel to/from the centre, interviews of shoppers in the weekday morning and afternoon peak periods were undertaken on a Thursday in late October 2015. The interviews asked shoppers for the following information:
 - arrival and departure routes;
 - ingress and egress points used to access the shopping centre;
 - which part of the car park they parked in; and
 - was their trip to the centre a destination passing trade?
- 2.37. Attachment A provides a summary of the arrival/departure routes and ingress/egress points. Using this information, matrices were developed assigning future retail trips from the arrival routes to the ingress points of the shopping centre (making adjustments for the changes in access arrangements and location of new parking areas) for the weekday morning and afternoon peak hours. Similar matrices were developed assigning future retail trips from the egress points to the departure routes. These matrices are provided in Attachment B. The distribution of future Saturday midday peak retail trips is the same as the weekday afternoon distribution of saturday midday distribution saturday midday distribution of saturday midday distribution saturday midday dis

traffic at the access points was found to be similar. The interviews found that some 15% of trips to the centre were passing trade. This is consistent with RMS Guidelines for a shopping centre of this size,

2.38. Table 2.3 provides a summary of the changes in retail traffic flows at the shopping centre access points in the weekday morning and afternoon peak hours.

	es in Retail Traffic Flows at Shopping Centre Access Points Periods) – vehicles per hour (VPH).							
Access	-	ting Road work)	PM (Existing Road Network)					
	In	Out	In	Out				
 Talavera Road (east) –Traffic Signals 	+30	+15	+50	+50				
2. Talavera Road (central) - LI/LO	+5	+5	+5	+20				
3. Talavera Road (west) – Traffic Signals with Link Road	+60	+80	+160	+305				
 Herring Road (north) – upper level entry/exit from Silver Car Park 	+5	+0	+35	+30				
 Herring Road (central) – upper level exit 	n/a	+10	n/a	+25				
6. Herring Road (south)	n/a	-55	n/a	-250				
 Waterloo Road (west) – entry only 	+20	n/a	+15	n/a				
8. Waterloo Road (central) – Traffic Signals with Link Road	+55	+80	+245	+285				
9. Waterloo Road (east) – LI/LO	+25	+40	+80	+165				
4a. Herring Road - tunnel exit to Herring Road	n/a	n/a	n/a	n/a				

2.39. Table 2.4 provides a summary of additional traffic generated by the residential and commercial components (for both Options I and 2). As noted in the section on access arrangements, the residential/commercial car parks are located on the western part of the site and as such do not have the same accessibility to the adjacent road network as the retail car parks.

Table 2.4:	Summary of Additional Traffic Generated by Tower Car Park at Shopping Centre Access Points (AM and PM Peak Periods) – vehicles per hour (VPH) - OPTION A (950 units)/Option B (650 units + Commercial Tower).										
Access		•	ting Road vork)	PM (Existin	g Road Network)						
		In	Out	In	Out						
	ı Road (west) – ignals with Link Road	n/a	+50/+50	n/a	+20/+60						
	a Road entry to bark (left in only)	+15/+45	n/a	+30/+30	n/a						
5. Herring upper le	Road (central) – vel	+10/+30	+40/+35	+20/20	+15/+45						
	o Road (central) – ignals with Link Road	+25/+75	+40/+35	+50/+50	+15/+45						
4a. Herring to Herring F	Road - tunnel exit Road	n/a	n/a	n/a	n/a						

2.40. The information provided in Attachments A & B and Tables 2.3 & 2.4 was provided to ARUP for use in assessing the traffic impacts on the surrounding road network.

Principles of Construction Management

2.41. At this stage a contractor/builder has not been appointed to carry out the demolition, excavation and construction of the proposed development and hence the construction methodology, process and staging of the development cannot be precisely defined. The contractor/builder will be responsible for the preparation and lodgement of the construction traffic management plan, which will be carried out prior to the commencement of construction.

- 2.42. Construction of the proposed development will be staged to minimise traffic effects and to maintain the continued operation of the shopping centre during the period of construction. Construction of the development is expected to commence with site establishment/initial enabling works (including services and mechanical plant relocation), erection of construction fencing/hoardings and the commencement of construction of the parking levels at the eastern end of the site.
- 2.43. Following the completion of the new parking levels at the eastern end of the site, the construction activity will move to the Herring Road, with the demolition and excavation of the western part of the site, and construction of the new basement parking levels, retail area and new residential/ commercial towers. The final stage of construction will involve the infill of new retail area and car parking areas on levels 4 and 5 within the central part of the site.
- 2.44. In association with the overall construction staging of the development, consideration will be given to the staging and upgrade of the Macquarie Park railway station (associated with the construction of the North West Metro).
- 2.45. During construction of the development, on-site construction compounds and onstreet work zones will be established. Construction and containment fencing will be erected around the perimeter of the site compound, with scaffolding and overhead protection provided where required.
- 2.46. Access to the construction compound will be provided via temporary construction access driveways onto Talavera Road, Waterloo Road and Herring Road. In order to minimise construction traffic on surrounding streets, trucks will approach and depart the site along designated truck routes, to and from the main road network (M2, Lane Cove Road and Epping road).
- 2.47. The loading and unloading of demolition, excavation and construction material to/from trucks will be carried out from the on-site construction compounds and

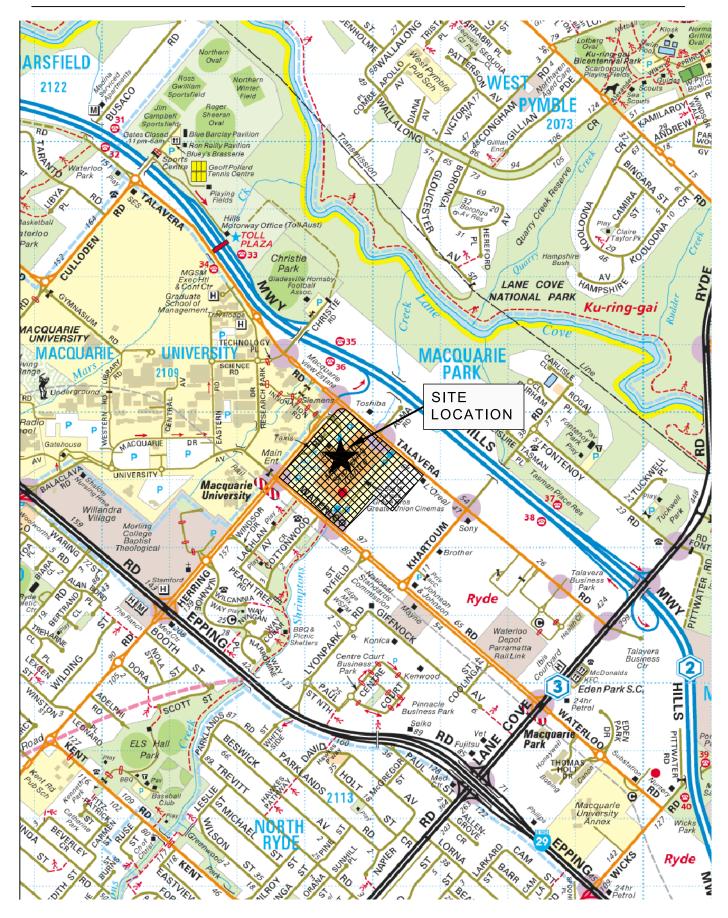
from on-street work zones in Talavera Road and Herring Road. The location and operation of the on-street work zones will need to be agreed with and approved by Ryde City Council's Traffic Committee. Construction material will be stored on-site within designated material handling areas.

- 2.48. Pedestrian activity on adjacent streets including Talavera Road, Waterloo Road and Herring Road will be protected with the provision of appropriate construction barriers, with overhead protection and Class B hoardings provided where required.
- 2.49. Openings in the construction fencing and the construction access driveways will be managed and controlled by qualified site personnel. Pedestrian movements across the access driveways and the movement of trucks entering and exiting the construction site compounds will be managed and controlled by traffic controllers. Pedestrian warning signs will be erected adjacent to the driveways and on pedestrian paths adjacent to the construction activity.
- 2.50. Work associated with the demolition, excavation and construction activity will be carried out in accordance with Council's agreed construction hours.
- 2.51. The site contractor will be responsible to instruct and control sub-contractors regarding the hours of work. Any work outside the approved construction hours would be subject to prior approval from Council.
- 2.52. The control of hours of operation avoids truck movements during the early morning and evening periods. To facilitate an efficient program, the arrival and departure of trucks associated with the demolition, excavation and construction activity will be regulated and on-site works will be carefully managed and controlled by site personnel. Trucks will be called onto the site when required. Trucks will enter and exit the construction site compounds, to/from the surrounding road network, in a forward direction.

- 2.53. The overall principles for traffic management during construction of the development will include:
 - take into account the future upgrade of the Macquarie Park railway station and possible future construction of the future Herring Road bus interchange;
 - maintain appropriate parking for customers, associated with the on-going operation of the centre;
 - maintain access to properties located in the vicinity of the site at all times during the construction process;
 - minimise loss of on-site parking;
 - maintain access for delivery vehicles associated with the continued operation of the shopping centre;
 - manage and control construction traffic movements on the adjacent road network and vehicles movements to and from the construction site;
 - trucks to enter and exit the site in a forward direction;
 - maintain traffic capacity at intersections and mid-block in the vicinity of the site;
 - restrict construction vehicle activity to designated truck routes through the area;
 - construction works will be staged to minimise traffic effects and to maintain the continued operation of the shopping centre;
 - construction vehicle work zones to be provided adjacent to the construction activity;
 - construction access driveways and on-street work zones to be managed and controlled by site personnel;

- provide a convenient and appropriate environment for pedestrians;
- minimise effects on pedestrian movements and amenity;
- maintain appropriate capacity for pedestrians at all times along footpaths adjacent to the shopping centre;
- maintain appropriate pedestrian access to the shopping centre from the various on-site parking areas during construction;
- maintain convenient access and circulation for public transport;
- pedestrian movements adjacent to construction activity, across construction access driveways and to/from public transport facilities along Herring Road and to/from the various on-site car parking areas will be managed and controlled by site personnel;
- traffic marshals will manage and control traffic movements on the surrounding road network adjacent to the shopping centre to ensure appropriate access to adjacent properties and to maintain two-way access at all times during the construction period;
- construction fencing will be erected around the perimeter of the construction sites. Hoardings, scaffolding and overhead protection will be provided where required;
- concrete barriers and containment fencing will be erected adjacent to the construction activity to separate general traffic from the construction work and to protect pedestrians;
- pedestrian warning signs and construction safety signs/devices to be utilised in the vicinity of the site and to be provided in accordance with WorkCover requirements;

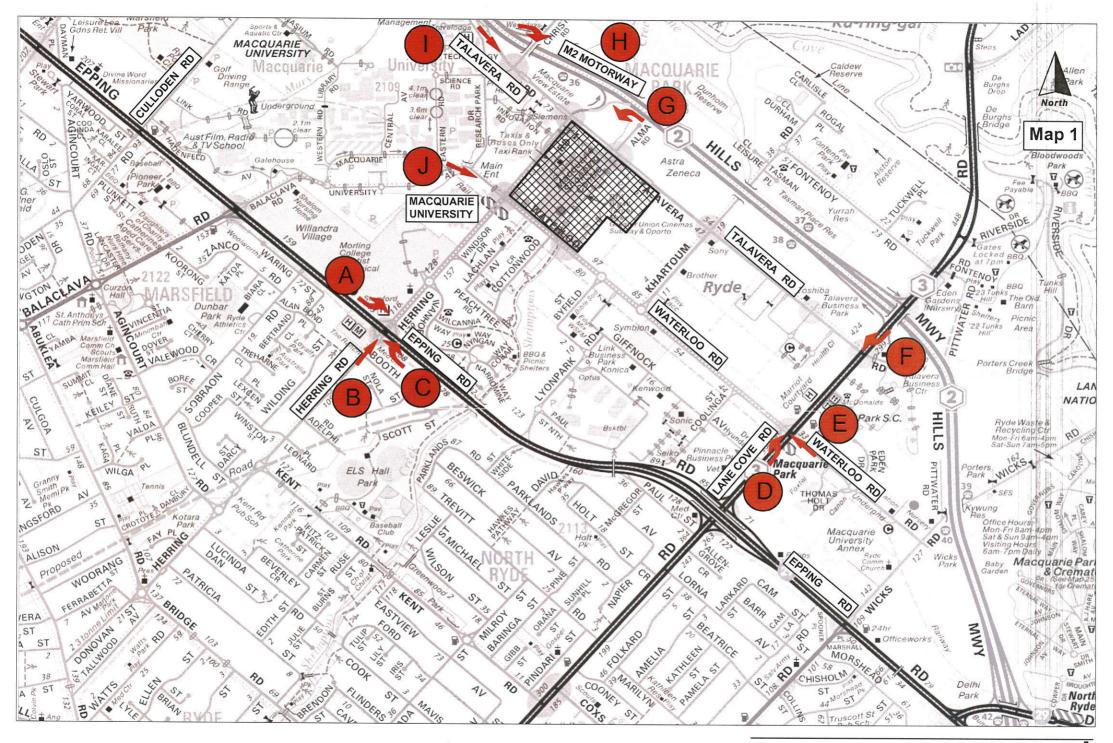
- site contractor to be responsible for the management of the site, the movement of trucks on and off the site, signage detail, traffic management and control of pedestrians and management and control of construction vehicles in the vicinity of the site; and
- construction activity to be carried out in accordance with Council's approved hours of work.
- 2.54. The preparation of the construction traffic management plan, signage detail, control of pedestrians and control and management of construction activity/vehicles in the vicinity of the site will be the responsibility of the appointed builder.

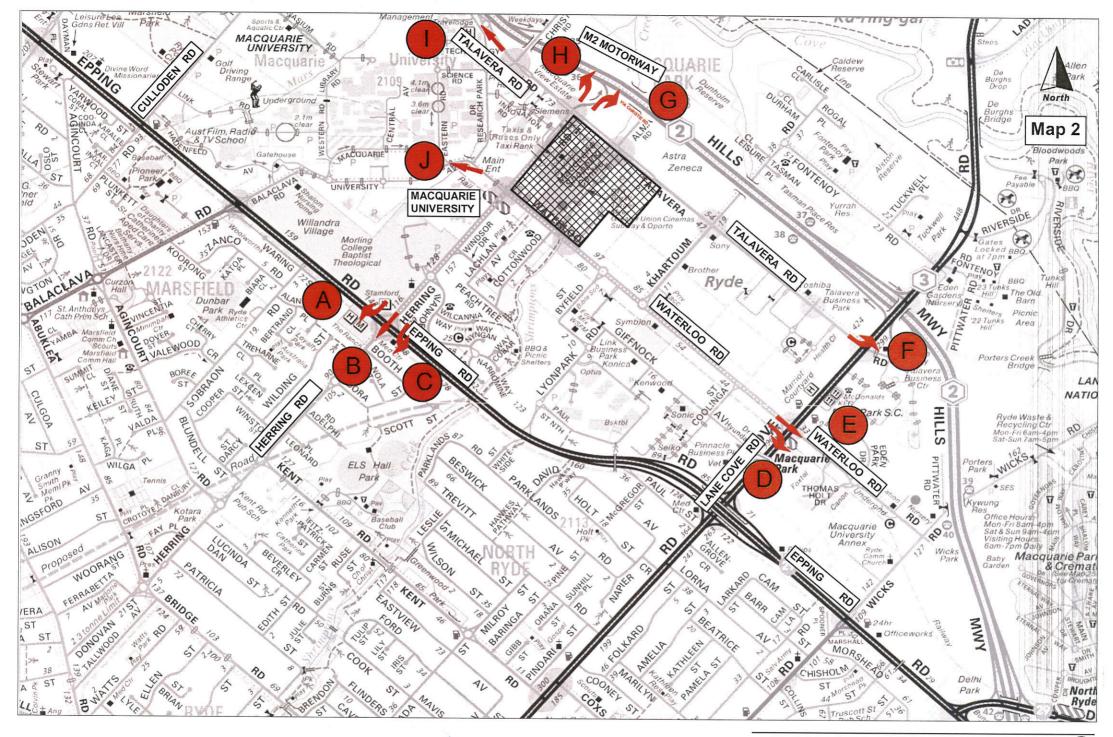

<u>Summary</u>

- 2.55. In summary the internal traffic and parking assessment of the Stage I DA to redevelop Macquarie Centre has found that:
 - the Stage I DA would allow expansion of the centre to provide an additional 39,700m² GLA retail area, four towers on the western part of the site (Herring Road frontage) comprising some 47,450m² GFA commercial plus 615 residential units or 915 residential units, additional car parking (some 2,175 spaces) and modifications to car park layouts, loading docks and access arrangements;
 - the proposed parking provision is considered appropriate given the sites location adjacent to the bus interchange and rail station;
 - retail parking will be provided at the same rate as currently provided for the shopping centre, residential parking at the DCP 2014 rates for sites adjacent to major public transport services, and commercial parking constrained;

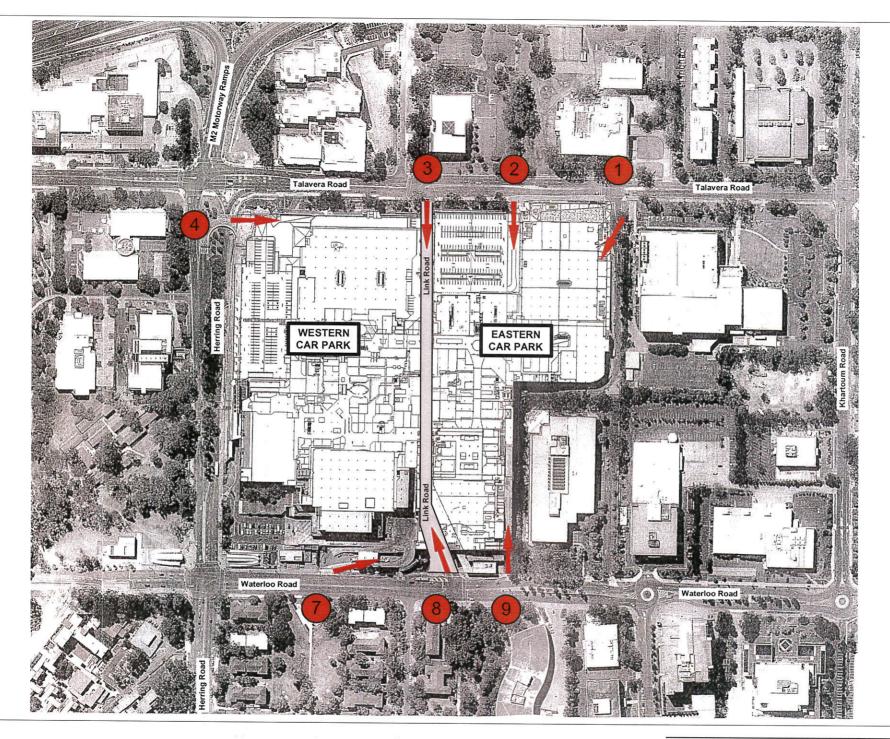
- access arrangements will be modified to account for changes in parking layouts, changes to the surrounding road network and to accommodate the additional traffic generated by the Stage I DA;
- the major changes in access arrangements are:
 - an additional exit lane on the Link Road approaches to the traffic signal controlled intersections with Waterloo Road and Talavera Road (to be detailed as part of the next design stage);
 - new entry to the tower car park on Talavera Road (between Herring Road and the Link Road);
 - o closure of the southern car park exit onto Herring Road.
- to accommodate the additional development, new car parking areas will be required and existing parking areas modified. Tower (residential and commercial) parking will be located on the western part of the site. Interconnection of retail parking will be maintained to allow shoppers to access parking areas once they are within the site.
- all new and modified parking areas will be designed to comply with AS2890.1-2004 and AS2890.6-2009. The existing parking guidance system will be retained to assist in directing shoppers to available parking;
- existing loading areas will be reconfigured and additional loading areas will be provided as part of the Stage I DA to service the additional retail and commercial/residential areas. Two new loading areas will be provided on the northern and western parts of the site to service retail and retail/tower components respectively;

- all new loading areas will be designed to comply with the requirements of the Australian Standard for Off-street commercial vehicle facilities (AS2890.2-2002);
- estimates of traffic generation of the various components of the Stage I DA have been based on RMS Guidelines (residential component) and surveys (retail and commercial components);
- Option I would generate some 540, 1,340 and 1,740 vehicles per hour in the weekday morning, weekday afternoon and Saturday midday peak hours respectively;
- Option 2 would generate some 630, 1,440 and 1,690 vehicles per hour in the weekday morning, weekday afternoon and Saturday midday peak hours respectively;
- the additional traffic generated by the Stage I DA has been distributed to the arrival/departure routes and centre accesses based on surveys of existing shoppers at the centre, counts of traffic movements at the access points, changes in access arrangements to/from the shopping centre and review of existing traffic patterns on the surrounding road network;
- the estimates of traffic generation and distribution were provided to ARUP for use in assessing the traffic impacts of the Stage 1 DA on the surrounding road network;
- the principles of construction traffic management have been set out, noting that construction will need to be staged to minimise impact on the surrounding area, the operation of the shopping centre, and on other major projects in the area (such as the rail station upgrades); and

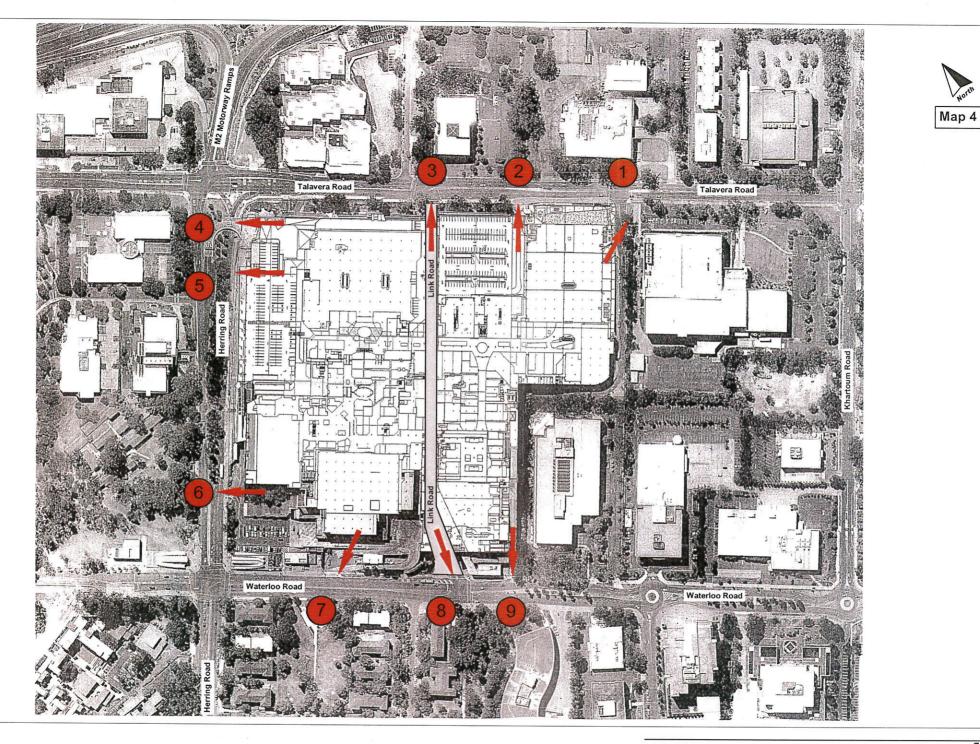

 the preparation of the construction traffic management plan, signage detail, control of pedestrians and control and management of construction activity/vehicles in the vicinity of the site will be the responsibility of the appointed builder.


Location Plan

ATTACHMENT A


SHOPPING CENTRE ARIVAL/DEPARTURE ROUTES & ACCESS POINTS

APPROACH ROADS



DEPARTURE ROADS

ENTRY DRIVEWAYS

Map 3

EXIT DRIVEWAYS

ATTACHMENT B

ADDITIONAL RETAIL TRIP DISTRIBUTION MATRICES

					Entry Gates					
~O	1	2	3	4	5	6	7	8	9	-
A	2%	0%	10%	69%	0%	0%	12%	2%	5%	
В	13%	0%	21%	17%	0%	0%	29%	8%	13%	
С	12%	6%	18%	29%	0%	0%	0%	35%	0%	
D	12%	0%	8%	12%	0%	0%	0%	68%	0%	
Е	49%	5%	33%	0%	0%	0%	0%	13%	0%	
F	0%	0%	67%	0%	0%	0%	33%	0%	0%	
G	0%	0%	100%	0%	0%	0%	0%	0%	0%	
н	13%	0%	80%	0%	0%	0%	3%	3%	3%	
I	0%	0%	50%	0%	0%	0%	25%	0%	25%	
J	14%	1%	31%	25%	0%	0%	10%	14%	5%	

Table 1 : AM Peak Hour Distribution of Trips (by Ingress)

						Exit Gates					
	×0	1	2	3	4	5	6	7	8	9	Total
	A	2%	6%	15%	17%	13%	28%	0%	19%	0%	100%
	В	10%	5%	20%	10%	5%	15%	0%	35%	0%	100%
	С	9%	0%	23%	14%	9%	0%	0%	23%	23%	100%
tes	D	13%	0%	13%	10%	0%	0%	0%	30%	33%	100%
Departure Routes	Е	21%	0%	38%	2%	0%	2%	0%	13%	25%	100%
Depa	F	0%	0%	60%	0%	0%	0%	0%	40%	0%	100%
	G	25%	0%	50%	0%	0%	0%	0%	25%	0%	100%
	Н	10%	8%	80%	0%	0%	0%	0%	3%	0%	100%
	I	0%	0%	20%	20%	10%	20%	0%	30%	0%	100%
	J	10%	3%	33%	9%	5%	10%	0%	19%	11%	100%

Table 2: AM Peak Hour Distribution of Trips (by Egress)

						Entry Gates					
	×0	1	2	3	4	5	6	7	8	9	- Tot
	A	3%	0%	3%	54%	0%	0%	23%	6%	11%	100
	В	9%	0%	0%	32%	0%	0%	36%	14%	9%	100
	С	17%	0%	17%	0%	0%	0%	0%	67%	0%	100
	D	0%	0%	9%	5%	0%	0%	0%	86%	0%	100
Arrival Routes	E	22%	3%	50%	6%	0%	0%	0%	19%	0%	100
Arriva	F	0%	0%	100%	0%	0%	0%	0%	0%	0%	100
	G	33%	0%	67%	0%	0%	0%	0%	0%	0%	100
	н	11%	0%	86%	0%	0%	0%	0%	0%	4%	100
	I	0%	0%	31%	46%	0%	0%	15%	0%	8%	100
	J	9%	1%	30%	21%	0%	0%	12%	22%	5%	100

Table 3 : PM Peak Hour Distribution of Trips (by Ingress)

						Exit Gates					
	×0	1	2	3	4	5	6	7	8	9	- Tot
	A	0%	0%	4%	15%	27%	35%	0%	19%	0%	1009
	В	7%	0%	7%	14%	14%	21%	0%	36%	0%	1009
	С	0%	0%	8%	0%	0%	0%	0%	25%	67%	1009
tes	D	0%	0%	14%	5%	5%	24%	0%	29%	24%	1009
Departure Routes	Е	15%	0%	58%	0%	3%	3%	0%	9%	12%	1009
Depar	F	0%	25%	75%	0%	0%	0%	0%	0%	0%	100%
	G	25%	0%	75%	0%	0%	0%	0%	0%	0%	100%
	Н	17%	17%	60%	0%	0%	0%	0%	6%	0%	100%
	I	0%	0%	33%	50%	0%	17%	0%	0%	0%	100%
	J	7%	4%	32%	6%	6%	13%	0%	17%	14%	100%

Table 4: PM Peak Hour Distribution of Trips (by Egress)

Appendix D

Framework Travel Plan

D1.1 What is a Framework Travel Plan?

A general community Framework Travel Plan (FTP) is a tool to minimise the negative impact of private vehicle travel on the environment. The Plan is a package of measures put in place to encourage more sustainable travel. FTP describes ways in which the use of sustainable transport may be encouraged. Using public transport, cycling, walking, working from home, carpooling, making business vehicles more fuel efficient and the use alternative fuels are all more sustainable means of transport than single occupant driving.

More generally, the principles of a Framework Travel Plan are applied to all people travelling to and from a site. Government authorities around the nation are placing increasing emphasis on the need to reduce the number and lengths of motorised journeys and in doing so encourage greater use of alternative means of travel which have less environmental impact than cars.

D1.2 Benefits of a Framework Travel Plan

The Framework Travel Plan can bring a number of benefits to Macquarie Centre residents, visitors and staff:

- Residents and employees can enjoy improved health, less stress, a better quality of life, cost and time savings, and greater travel choice;
- Reduced traffic congestion;
- Benefit from improved air quality, less noise and pollutants; and
- Deliver health benefits, tackle obesity and improve residents quality of life

D1.3 Framework Travel Plan Framework

A Framework Travel Plan for the Macquarie Centres will need to address the following issues:

- What are the objectives for the buildings in terms of travel journeys including trips to work, retail and other land uses.
- How are the set objectives going to be met? What measures are going to be implemented and encouraged?
- Who is going to be responsible for the management, implementation and administration of the measures?

D1.4 Framework Travel Plan Objectives

The main objectives of the Framework Travel Plan are to reduce the need to travel and promotion of sustainable means of transport. Specifically for the Macquarie Centre, the primary purpose of the Framework Travel Plan measures is to achieve the target mode split for journey to work trips of 40% public transport / 60% private vehicle for the new residents and commercial workers, as outlined in the Macquarie Park DCP.

D1.4.1 Staff

The more specific objectives to enable staff to adopt the FTP include:

- High modal share for public transport, cycling and walking to work and residential journeys;
- To ensure adequate facilities are provided at the site to enable staff, residents and visitors to commute by sustainable transport modes;
- To reduce the number of car journeys associated with business travel by staff and visitors;
- To facilitate the sustainable and safe travel of new employees;
- To reduce the need to travel for work-related activities, particularly air travel; and
- To raise awareness of sustainable transport amongst staff.

D1.4.2 Residents and visitors

The more specific objectives to enable residents and visitors to adopt the FTP include:

- To reduce the level of single occupancy car borne trips associated with commuting.
- To facilitate the sustainable and safe travel of visitors to the site.
- To reduce site traffic congestion and associated pollution in order to enhance, improve and make safe journeys of minority/sustainable transport mode users.
- To work in partnership with neighbouring organisations/developments, local authorities, retailers and other relevant bodies in achieving the maximum mode shift away from the private car.
- To continually develop, implement, monitor, evaluate and review the progress of the travel plan strategy.
- To facilitate all residents' access to key facilities such as retail, leisure, health and education.

D2 Staff Framework Travel Plan Measures

This section discusses the travel demand measure which can be adopted to reduce the need for staff to travel to work and promote a sustainable means of transport.

A FTP for the Macquarie Centre staff will need to address the following issues:

- What are the objectives for the buildings in terms of travel journeys to and from work, during work hours and other travel to and from the building?
- How are the set objectives going to be met? What measures are going to be implemented and encouraged?
- Who is going to be responsible for the management, implementation and administration of the measures?

D2.1 Framework Travel Plan Objectives

The main objectives of the FTP are to reduce the need to travel and promotion of sustainable means of transport, with focus on altering the travel demand to work.

The more specific objectives include:

- High modal share for public transport, cycling and walking to work and residential journeys;
- To ensure adequate facilities are provided at the site to enable staff, residents and visitors to commute by sustainable transport modes;
- To reduce the number of car journeys associated with business travel by staff and visitors;
- To facilitate the sustainable and safe travel of new employees;
- To reduce the need to travel for work-related activities, particularly air travel; and
- To raise awareness of sustainable transport amongst staff.

D2.2 Framework Travel Plan Measures

In order to meet the objectives and targets of the FTP, the following physical and management measures should be implemented.

D2.2.1 General Marketing and Promotion

The objectives of the FTP will only be achieved with the support of the Macquarie Centre staff. Marketing the benefits and promoting the sustainable alternatives available are therefore crucial in encouraging staff to adopt the FTP measures. It is important that at an early stage, staff are made aware of the need for the FTP, and that it is emphasised that the measures are being introduced to support and encourage people to use cars more wisely. In addition to raising general awareness, any successes achieved will be fully publicised to staff in order to motivate them to use sustainable modes of transport.

D2.2.2 Reducing The Need To Travel

To ensure that sustainable transport options are promoted to staff when making journeys for work purposes, and to reduce the need to travel, the following measures should be implemented. These measures require implementation by staff members across the building.

- Active promotion of the office teleconferencing facilities as an alternative to face to face meetings. This can be achieved by placing 'reducing the need to travel' as an item on internal group meeting agendas;
- Include teleconference meetings as a standard option in client proposals in preference to face to face meetings where practical; and
- Consider a more formal approach to working from home and actively encourage staff to consider this option. Include working from home as an item on the agenda for internal group meetings.

D2.2.3 Travel During the Working Day

To provide Macquarie Centre staff with a choice of convenient sustainable transport option for work – related travel during the working day the following initiatives should be promoted:

- Use of the Sydney Trains network to travel to places that are on or near a train line;
- Walk to places that are close by rather than taking the taxi;
- Promotion of the taxi pooling system for the Macquarie Centre Commercial Building which would cross check for common destinations and inform the passenger of possible taxi pooling options.

D2.2.4 Cycling

The Macquarie Centre will have good access to the cycling network and will provide onsite facilities for cyclists i.e. easily accessible bike room/shelter, changing rooms and showers, lockers and good access from those facilities to the office. In order to activate and promote cycling the following measures should be taken:

- Provide Sydney cycle maps to staff;
- Participate in annual events such as 'Ride to Work Day';
- Provide secure bicycle parking and end of trip facilities for Macquarie Centre staff
- Broadcasts in staff areas should have news of events / generic posters promoting cycling;
- Staff who cycle to work should be encouraged to form a Bicycle User Group in order to provide a body of regular cyclists who can discuss issues relating to the provision of on-site cycling facilities and the maintenance of off-site cycle routes; and
- Set up 'Bike Buddies' scheme for less confident staff interested in cycling.

D2.2.5 Public Transport

To promote the use of public transport work related trips and journeys to/from the Macquarie Centre.

- Create and maintain an intranet 'Public Transport links page' containing useful links to journey planning websites in Sydney;
- Provide useful public transport maps and promotional items to potential and current public transport users; and
- Investigate the possibility of purchasing an Opal Card for general use of building staff for business journeys, in lieu of cars and taxis

D2.2.6 Walking

Specific Travel Plan measures designed to encourage more walking trips to and from work by those employees living within a reasonable distance.

- Produce walking related articles for inclusion in the office newsletter focussing on 'walking champions' to highlight best practise in walking to business meetings;
- Participate in Walk to Work day.

D2.2.7 Staff Induction

To ensure new members of staff are aware of the FTP, all new staff members should be made aware of the Plan as part of their induction process. The FTP section of the induction should provide new starters with the following:

- A brief introduction to the FTP and its purpose;
- Tour of the office to include a visit to cycle parking areas and shower and changing facilities; and
- Provision of FTP information which would include information on incentives to use sustainable means of transport e.g. /taxi share system.

D3 Resident Framework Travel Plan Measures

This section discusses travel alternatives and planning policies which can be adopted to reduce the need for residents to travel using single occupancy car borne trips and promote a sustainable means of transport.

A FTP for the Macquarie Centre residents will need to address the following issues:

- What are the **objectives** for the buildings in terms of travel journeys including trips to work, retail and other land uses.
- How are the set objectives going to be met? What **measures** are going to be implemented and encouraged?
- Who is going to be responsible for the management, implementation and administration of the measures?

D3.1 Framework Travel Plan Objectives

The main objectives of the Framework Travel Plan are to reduce the need to travel and promotion of sustainable means of transport.

The more specific objectives include:

- To reduce the level of single occupancy car borne trips associated with commuting.
- To facilitate the sustainable and safe travel of visitors to the site.
- To reduce site traffic congestion and associated pollution in order to enhance, improve and make safe journeys of minority/sustainable transport mode users.
- To work in partnership with neighbouring organisations/developments, local authorities, retailers and other relevant bodies in achieving the maximum mode shift away from the private car.
- To continually develop, implement, monitor, evaluate and review the progress of the travel plan strategy.
- To facilitate all residents' access to key facilities such as retail, leisure, health and education.

D3.2 Framework Travel Plan Measures

In order to meet the objectives and targets of the Framework Travel Plan, the following physical and management measures should be implemented.

D3.2.1 Residents' Travel Packs

A new development provides an opportunity to offer residents advice on travel modes to and from the site. At this time, new travel habits are being established and people may particularly welcome information about the travel services and facilities available to them.

A travel pack could be supplied to all residents. The pack will include information on the development travel plan, bicycle and walking routes, bus and rail timetables, information on car sharing and membership information for the development car club. The pack could also include discount vouchers for a local bicycle retailer and a questionnaire about travel behaviour.

D3.2.2 General Marketing and Promotion

The objectives of the FTP will only be achieved with the support of Macquarie Centre residents. Marketing the benefits and promoting the sustainable alternatives available are therefore crucial in encouraging residents to adopt the FTP measures. It is important that at an early stage, residents are made aware of the need for the FTP, and that it is emphasised that the measures are being introduced to support and encourage people to use cars more wisely. In addition to raising general awareness, any successes achieved will be fully publicised to residents in order to motivate them to use sustainable modes of transport.

- Travel information and poster could be set up at public area, for example, lobby, notice board, or inside the elevators;
- A Framework Travel Plan 'e-flyer' should be distributed to residents during the launch of the Plan. The 'e-flyer' will provide a summary of the benefits to residents of the Travel Plan, its objectives and measures. This could be distributed to residents via the managing strata corporation;
- Events such as National Bike Week, Bike2Work Days, walk to work day should be promoted to residents through notice board posters and email;

D3.2.3 Car Sharing

Car sharing is a proven means of reducing the number of car journeys generated by a development. A recent study on the effectiveness of car sharing schemes across Sydney (e.g. GoGet) shows that every car share space replaces the need for 12 private vehicle spaces¹.

Car share arrangements should form an integral part of new project applications and this can be conditioned at the appropriate time and would form part of a Travel Plan. Information on local car sharing schemes would be provided in the residents travel pack.

The Macquarie Park DCP notes that 1 car share space should be provided for every 50 proposed residential parking spaces. The quantum and location of car share spaces within the Macquarie Centre will be confirmed in subsequent development applications.

D3.2.4 Travel During the Day

To provide Macquarie Centre residents with a choice of convenient sustainable transport options for travelling during the day, the following initiatives should be promoted:

- Provide bus, train and ferry timetable and routes information specific to the building location at lobby;
- Provide walking and cycling maps to the surrounding public transport nodes, recreational area and local attractions; and
- Promote use of bikes for short journeys

D3.2.5 Cycling

The Macquarie Centre will have good access to the cycling network. One secure bicycle parking space will be provided for each residential dwelling in the Macquarie Centres, complying with Green Building Council Green Star requirements.

In order to activate and promote cycling the following measures should be taken:

- Supply a communal bike toolkit-this can consist of puncture repair equipment, a bike pump, a spare lock and lights;
- Come to an arrangement with a local cycle retailer for cheap servicing of resident bikes. Negotiate group buying discount on bicycle, equipment and accessories purchase.
- Provide Sydney cycle maps to residents;
- Participate in annual events such as 'Ride to Work Day';
- Notice boards in public areas should have news of events / generic posters promoting cycling;
- Provide pool bikes for common use by residents of the buildings;

¹ SGS Economics & Planning (2012), Benefit-Cost Analysis of Car Share within the City of Sydney

- The building management should have a transport website specific for their location containing details of bike storage areas, and links containing useful journey planning websites in Sydney;
- Inform residents on public transport cycling carriage policies and cycle storage facilities at rail stations;
- Formation of a Bicycle User Group in order to provide a body of regular cyclists who can discuss on issues relating to the provision of on-site cycling facilities and the maintenance of off-site cycle routes; and

D3.2.6 Public Transport

To promote the use of public transport.

- Provide information of useful website links to journey planning websites in Sydney;
- Provide useful public transport maps and promotional items to potential and current public transport users;
- Notice boards in public areas should have news of events / generic posters promoting public transport;
- provision of bus passes for the initial occupation of the units so that residents would be encouraged to make public transport their modal choice from the day they moved into the unit

D3.2.7 Walking

Specific Travel Plan measures designed to encourage more walking trips for short distance trips.

- Improvements to (and maintenance of) the walking network and signage;
- Formation of local walking group using Heart Foundation Walking Walkers kit (www.heartfoundation.org.au/walking). Hold regular recreational walks for residents;
- Investigating potential participation in <u>www.walksmart.net</u> website; and
- Participate in Walk to Work day and look into holding a 'healthy breakfast' as a reward to all those who participate.